具有稀疏支持和稀疏傅立叶-玻尔支持的纯点测度

IF 1.1 Q1 MATHEMATICS
M. Baake, Nicolae Strungaru, Venta Terauds
{"title":"具有稀疏支持和稀疏傅立叶-玻尔支持的纯点测度","authors":"M. Baake, Nicolae Strungaru, Venta Terauds","doi":"10.1112/tlm3.12020","DOIUrl":null,"url":null,"abstract":"Fourier‐transformable Radon measures are called doubly sparse when both the measure and its transform are pure point measures with sparse support. Their structure is reasonably well understood in Euclidean space, based on the use of tempered distributions. Here, we extend the theory to second countable, locally compact Abelian groups, where we can employ general cut and project schemes and the structure of weighted model combs, along with the theory of almost periodic measures. In particular, for measures with Meyer set support, we characterise sparseness of the Fourier–Bohr spectrum via conditions of crystallographic type, and derive representations of the measures in terms of trigonometric polynomials. More generally, we analyse positive definite, doubly sparse measures in a natural cut and project setting, which results in a Poisson summation type formula.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlm3.12020","citationCount":"4","resultStr":"{\"title\":\"Pure point measures with sparse support and sparse Fourier–Bohr support\",\"authors\":\"M. Baake, Nicolae Strungaru, Venta Terauds\",\"doi\":\"10.1112/tlm3.12020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fourier‐transformable Radon measures are called doubly sparse when both the measure and its transform are pure point measures with sparse support. Their structure is reasonably well understood in Euclidean space, based on the use of tempered distributions. Here, we extend the theory to second countable, locally compact Abelian groups, where we can employ general cut and project schemes and the structure of weighted model combs, along with the theory of almost periodic measures. In particular, for measures with Meyer set support, we characterise sparseness of the Fourier–Bohr spectrum via conditions of crystallographic type, and derive representations of the measures in terms of trigonometric polynomials. More generally, we analyse positive definite, doubly sparse measures in a natural cut and project setting, which results in a Poisson summation type formula.\",\"PeriodicalId\":41208,\"journal\":{\"name\":\"Transactions of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/tlm3.12020\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/tlm3.12020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

当测度及其变换都是具有稀疏支持的纯点测度时,傅里叶变换的Radon测度被称为双稀疏。基于调和分布的使用,它们的结构在欧几里得空间中得到了相当好的理解。在这里,我们将该理论扩展到第二可数局部紧致阿贝尔群,在那里我们可以使用一般的割和投影方案和加权模型梳的结构,以及概周期测度的理论。特别是,对于具有Meyer集支持的度量,我们通过晶体学类型的条件来表征傅立叶-玻尔谱的稀疏性,并根据三角多项式导出度量的表示。更普遍地说,我们分析了自然切割和项目环境中的正定、双稀疏测度,这导致了泊松求和型公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pure point measures with sparse support and sparse Fourier–Bohr support
Fourier‐transformable Radon measures are called doubly sparse when both the measure and its transform are pure point measures with sparse support. Their structure is reasonably well understood in Euclidean space, based on the use of tempered distributions. Here, we extend the theory to second countable, locally compact Abelian groups, where we can employ general cut and project schemes and the structure of weighted model combs, along with the theory of almost periodic measures. In particular, for measures with Meyer set support, we characterise sparseness of the Fourier–Bohr spectrum via conditions of crystallographic type, and derive representations of the measures in terms of trigonometric polynomials. More generally, we analyse positive definite, doubly sparse measures in a natural cut and project setting, which results in a Poisson summation type formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信