具有自由边界条件的Korteweg型可压缩流体模型:模型问题

Pub Date : 2017-05-01 DOI:10.1619/fesi.62.337
Hirokazu Saito
{"title":"具有自由边界条件的Korteweg型可压缩流体模型:模型问题","authors":"Hirokazu Saito","doi":"10.1619/fesi.62.337","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to prove the existence of ${\\mathcal R}$-bounded solution operator families for a resolvent problem on the upper half-space arising from a compressible fluid model of Korteweg type with free boundary condition. Such a compressible fluid model was derived by Dunn and Serrin (1985) and studied by Kotschote (2008) as a boundary value problem with non-slip boundary condition.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Compressible Fluid Model of Korteweg Type with Free Boundary Condition: Model Problem\",\"authors\":\"Hirokazu Saito\",\"doi\":\"10.1619/fesi.62.337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to prove the existence of ${\\\\mathcal R}$-bounded solution operator families for a resolvent problem on the upper half-space arising from a compressible fluid model of Korteweg type with free boundary condition. Such a compressible fluid model was derived by Dunn and Serrin (1985) and studied by Kotschote (2008) as a boundary value problem with non-slip boundary condition.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/fesi.62.337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.62.337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文的目的是证明由具有自由边界条件的Korteweg型可压缩流体模型引起的上半空间上的预解问题的${\mathcal R}$有界解算子族的存在性。Dunn和Serrin(1985)导出了这种可压缩流体模型,Kotschote(2008)将其作为具有防滑边界条件的边值问题进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Compressible Fluid Model of Korteweg Type with Free Boundary Condition: Model Problem
The aim of this paper is to prove the existence of ${\mathcal R}$-bounded solution operator families for a resolvent problem on the upper half-space arising from a compressible fluid model of Korteweg type with free boundary condition. Such a compressible fluid model was derived by Dunn and Serrin (1985) and studied by Kotschote (2008) as a boundary value problem with non-slip boundary condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信