{"title":"气候变化对辛科湖水质的模拟影响","authors":"Hadiseh Bolkhari, L. Boegman, Ralph E. H. Smith","doi":"10.1080/20442041.2021.1969190","DOIUrl":null,"url":null,"abstract":"ABSTRACT Lake Simcoe has undergone eutrophication and hypoxia since the 1960s. Climate change, leading to enhanced summer thermal stratification, has been identified as a key stressor. In this study, we modeled the impacts of climate change on hydrodynamics and biogeochemistry in Lake Simcoe by applying a 1-dimensional (vertical) model forced with A2 and B1 scenario outputs from a global climate model over 2000–2100. The model was calibrated in 2008 and validated in 2009, with maximum root mean square error (RMSE) of modelled temperature between 1.5 and 3.0 °C and dissolved oxygen RMSE between 0.5 and 2.5 mg L−1. Phytoplankton chlorophyll a was simulated with RMSE between 1.25 µg L−1 (large diatoms) and ∼0.5 µg L−1 (other groups). Interannual variability in spring water temperature and length of stratification were related to changes in the North Atlantic and Artic Oscillation indices, respectively. Under A2 and B1 forcing, the duration of stratification will increase by 45 and 38 days in summer between spring and fall turnover, respectively. The extended stratified period leads to a reduction in hypolimnetic dissolved oxygen from 3–7 to <3 mg L−1, thereby reducing the quality of cold-water fish habitat and increasing internal phosphorus loading from the benthos. These internal loads, combined with increased water temperatures, lead to increased cyanobacteria concentrations, beginning around 2070.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"12 1","pages":"215 - 231"},"PeriodicalIF":2.7000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulated impacts of climate change on Lake Simcoe water quality\",\"authors\":\"Hadiseh Bolkhari, L. Boegman, Ralph E. H. Smith\",\"doi\":\"10.1080/20442041.2021.1969190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Lake Simcoe has undergone eutrophication and hypoxia since the 1960s. Climate change, leading to enhanced summer thermal stratification, has been identified as a key stressor. In this study, we modeled the impacts of climate change on hydrodynamics and biogeochemistry in Lake Simcoe by applying a 1-dimensional (vertical) model forced with A2 and B1 scenario outputs from a global climate model over 2000–2100. The model was calibrated in 2008 and validated in 2009, with maximum root mean square error (RMSE) of modelled temperature between 1.5 and 3.0 °C and dissolved oxygen RMSE between 0.5 and 2.5 mg L−1. Phytoplankton chlorophyll a was simulated with RMSE between 1.25 µg L−1 (large diatoms) and ∼0.5 µg L−1 (other groups). Interannual variability in spring water temperature and length of stratification were related to changes in the North Atlantic and Artic Oscillation indices, respectively. Under A2 and B1 forcing, the duration of stratification will increase by 45 and 38 days in summer between spring and fall turnover, respectively. The extended stratified period leads to a reduction in hypolimnetic dissolved oxygen from 3–7 to <3 mg L−1, thereby reducing the quality of cold-water fish habitat and increasing internal phosphorus loading from the benthos. These internal loads, combined with increased water temperatures, lead to increased cyanobacteria concentrations, beginning around 2070.\",\"PeriodicalId\":49061,\"journal\":{\"name\":\"Inland Waters\",\"volume\":\"12 1\",\"pages\":\"215 - 231\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inland Waters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/20442041.2021.1969190\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inland Waters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/20442041.2021.1969190","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Simulated impacts of climate change on Lake Simcoe water quality
ABSTRACT Lake Simcoe has undergone eutrophication and hypoxia since the 1960s. Climate change, leading to enhanced summer thermal stratification, has been identified as a key stressor. In this study, we modeled the impacts of climate change on hydrodynamics and biogeochemistry in Lake Simcoe by applying a 1-dimensional (vertical) model forced with A2 and B1 scenario outputs from a global climate model over 2000–2100. The model was calibrated in 2008 and validated in 2009, with maximum root mean square error (RMSE) of modelled temperature between 1.5 and 3.0 °C and dissolved oxygen RMSE between 0.5 and 2.5 mg L−1. Phytoplankton chlorophyll a was simulated with RMSE between 1.25 µg L−1 (large diatoms) and ∼0.5 µg L−1 (other groups). Interannual variability in spring water temperature and length of stratification were related to changes in the North Atlantic and Artic Oscillation indices, respectively. Under A2 and B1 forcing, the duration of stratification will increase by 45 and 38 days in summer between spring and fall turnover, respectively. The extended stratified period leads to a reduction in hypolimnetic dissolved oxygen from 3–7 to <3 mg L−1, thereby reducing the quality of cold-water fish habitat and increasing internal phosphorus loading from the benthos. These internal loads, combined with increased water temperatures, lead to increased cyanobacteria concentrations, beginning around 2070.
期刊介绍:
Inland Waters is the peer-reviewed, scholarly outlet for original papers that advance science within the framework of the International Society of Limnology (SIL). The journal promotes understanding of inland aquatic ecosystems and their management. Subject matter parallels the content of SIL Congresses, and submissions based on presentations are encouraged.
All aspects of physical, chemical, and biological limnology are appropriate, as are papers on applied and regional limnology. The journal also aims to publish articles resulting from plenary lectures presented at SIL Congresses and occasional synthesis articles, as well as issues dedicated to a particular theme, specific water body, or aquatic ecosystem in a geographical area. Publication in the journal is not restricted to SIL members.