{"title":"竞争第一通道渗流与转换的共存性","authors":"T. Finn, Alexandre O. Stauffer","doi":"10.1214/22-aap1792","DOIUrl":null,"url":null,"abstract":"We introduce a two-type first passage percolation competition model on infinite connected graphs as follows. Type 1 spreads through the edges of the graph at rate 1 from a single distinguished site, while all other sites are initially vacant. Once a site is occupied by type 1, it converts to type 2 at rate $\\rho>0$. Sites occupied by type 2 then spread at rate $\\lambda>0$ through vacant sites \\emph{and} sites occupied by type 1, whereas type 1 can only spread through vacant sites. If the set of sites occupied by type 1 is non-empty at all times, we say type 1 \\emph{survives}. In the case of a regular $d$-ary tree for $d\\geq 3$, we show type 1 can survive when it is slower than type 2, provided $\\rho$ is small enough. This is in contrast to when the underlying graph is $\\mathbb{Z}^d$, where for any $\\rho>0$, type 1 dies out almost surely if $\\lambda>1$.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coexistence in competing first passage percolation with conversion\",\"authors\":\"T. Finn, Alexandre O. Stauffer\",\"doi\":\"10.1214/22-aap1792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a two-type first passage percolation competition model on infinite connected graphs as follows. Type 1 spreads through the edges of the graph at rate 1 from a single distinguished site, while all other sites are initially vacant. Once a site is occupied by type 1, it converts to type 2 at rate $\\\\rho>0$. Sites occupied by type 2 then spread at rate $\\\\lambda>0$ through vacant sites \\\\emph{and} sites occupied by type 1, whereas type 1 can only spread through vacant sites. If the set of sites occupied by type 1 is non-empty at all times, we say type 1 \\\\emph{survives}. In the case of a regular $d$-ary tree for $d\\\\geq 3$, we show type 1 can survive when it is slower than type 2, provided $\\\\rho$ is small enough. This is in contrast to when the underlying graph is $\\\\mathbb{Z}^d$, where for any $\\\\rho>0$, type 1 dies out almost surely if $\\\\lambda>1$.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1792\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1792","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Coexistence in competing first passage percolation with conversion
We introduce a two-type first passage percolation competition model on infinite connected graphs as follows. Type 1 spreads through the edges of the graph at rate 1 from a single distinguished site, while all other sites are initially vacant. Once a site is occupied by type 1, it converts to type 2 at rate $\rho>0$. Sites occupied by type 2 then spread at rate $\lambda>0$ through vacant sites \emph{and} sites occupied by type 1, whereas type 1 can only spread through vacant sites. If the set of sites occupied by type 1 is non-empty at all times, we say type 1 \emph{survives}. In the case of a regular $d$-ary tree for $d\geq 3$, we show type 1 can survive when it is slower than type 2, provided $\rho$ is small enough. This is in contrast to when the underlying graph is $\mathbb{Z}^d$, where for any $\rho>0$, type 1 dies out almost surely if $\lambda>1$.
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.