用拉格朗日量数值研究球形粒子在旋转抛物线中的运动

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY
H. Khalilia, R. Jarrar, J. Asad
{"title":"用拉格朗日量数值研究球形粒子在旋转抛物线中的运动","authors":"H. Khalilia, R. Jarrar, J. Asad","doi":"10.24874/jsscm.2018.12.01.04","DOIUrl":null,"url":null,"abstract":"In this paper, we study the motion of a spherical particle in a rotating parabola using the Lagrangian method. As the first step, we construct the Lagrangian of the system, and then we obtain the Euler-Lagrange equations (i.e. equation of motion of the system). The obtained equation of motion is a homogenous second order equation. Finally, we solve this equation numerically using the ode45 code which is based on Runge-Kutta method.","PeriodicalId":42945,"journal":{"name":"Journal of the Serbian Society for Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"NUMERICAL STUDY OF MOTION OF A SPHERICAL PARTICLE IN A ROTATING PARABOLA USING LAGRANGIAN\",\"authors\":\"H. Khalilia, R. Jarrar, J. Asad\",\"doi\":\"10.24874/jsscm.2018.12.01.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the motion of a spherical particle in a rotating parabola using the Lagrangian method. As the first step, we construct the Lagrangian of the system, and then we obtain the Euler-Lagrange equations (i.e. equation of motion of the system). The obtained equation of motion is a homogenous second order equation. Finally, we solve this equation numerically using the ode45 code which is based on Runge-Kutta method.\",\"PeriodicalId\":42945,\"journal\":{\"name\":\"Journal of the Serbian Society for Computational Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Serbian Society for Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24874/jsscm.2018.12.01.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Serbian Society for Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24874/jsscm.2018.12.01.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们用拉格朗日方法研究了球形粒子在旋转抛物线中的运动。作为第一步,我们构造了系统的拉格朗日量,然后我们得到了欧拉-拉格朗日方程(即系统的运动方程)。所得到的运动方程是一个齐次二阶方程。最后,我们使用基于龙格-库塔方法的ode45程序对该方程进行了数值求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NUMERICAL STUDY OF MOTION OF A SPHERICAL PARTICLE IN A ROTATING PARABOLA USING LAGRANGIAN
In this paper, we study the motion of a spherical particle in a rotating parabola using the Lagrangian method. As the first step, we construct the Lagrangian of the system, and then we obtain the Euler-Lagrange equations (i.e. equation of motion of the system). The obtained equation of motion is a homogenous second order equation. Finally, we solve this equation numerically using the ode45 code which is based on Runge-Kutta method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信