{"title":"一阶映射、LS范畴和更高拓扑复杂性","authors":"Yuli B. Rudyak, Soumen Sarkar","doi":"10.12775/tmna.2021.051","DOIUrl":null,"url":null,"abstract":"In this paper, we study the relation between the Lusternik-Schnirelmann category\nand the topological complexity of two closed oriented manifolds connected by a degree one map.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maps of degree one, LS category and higher topological complexities\",\"authors\":\"Yuli B. Rudyak, Soumen Sarkar\",\"doi\":\"10.12775/tmna.2021.051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the relation between the Lusternik-Schnirelmann category\\nand the topological complexity of two closed oriented manifolds connected by a degree one map.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2021.051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2021.051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maps of degree one, LS category and higher topological complexities
In this paper, we study the relation between the Lusternik-Schnirelmann category
and the topological complexity of two closed oriented manifolds connected by a degree one map.