MiniGAN:走向信息与非信息的图像传输

IF 0.6 4区 工程技术 Q4 MATERIALS SCIENCE, TEXTILES
Fangjian Liao, Xingxing Zou, W. Wong
{"title":"MiniGAN:走向信息与非信息的图像传输","authors":"Fangjian Liao, Xingxing Zou, W. Wong","doi":"10.1177/24723444221136635","DOIUrl":null,"url":null,"abstract":"This article proposes a generative adversarial networks (MiniGAN) to tackle both informative and uninformative image transferring. The generator of MiniGAN is based on the structure of StyleGANv2, in which the encoder and style transform block are proposed to extract the high-level feature maps of the source image and capture the latent representation of the target image, respectively. This information guides the generator for the final image generation. The proposed MiniGAN outperforms other models in style transferring while preserving the color information on the informative images. To test the performance of MiniGAN on the uninformative images, a new data set consisting of 10,000 fashion hand drawings is proposed. Extensive experiments and detailed analysis are presented to demonstrate the performance of MiniGAN.","PeriodicalId":6955,"journal":{"name":"AATCC Journal of Research","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MiniGAN: Toward Informative and Uninformative Image Transferring\",\"authors\":\"Fangjian Liao, Xingxing Zou, W. Wong\",\"doi\":\"10.1177/24723444221136635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a generative adversarial networks (MiniGAN) to tackle both informative and uninformative image transferring. The generator of MiniGAN is based on the structure of StyleGANv2, in which the encoder and style transform block are proposed to extract the high-level feature maps of the source image and capture the latent representation of the target image, respectively. This information guides the generator for the final image generation. The proposed MiniGAN outperforms other models in style transferring while preserving the color information on the informative images. To test the performance of MiniGAN on the uninformative images, a new data set consisting of 10,000 fashion hand drawings is proposed. Extensive experiments and detailed analysis are presented to demonstrate the performance of MiniGAN.\",\"PeriodicalId\":6955,\"journal\":{\"name\":\"AATCC Journal of Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AATCC Journal of Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/24723444221136635\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AATCC Journal of Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/24723444221136635","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种生成对抗性网络(MiniGAN)来处理信息和非信息图像传输。MiniGAN的生成器基于StyleGANv2的结构,其中编码器和样式变换块分别用于提取源图像的高级特征图和捕获目标图像的潜在表示。这些信息指导生成器生成最终图像。所提出的MiniGAN在风格传递方面优于其他模型,同时保留了信息图像上的颜色信息。为了测试MiniGAN在无信息图像上的性能,提出了一个由10000幅时尚手绘组成的新数据集。通过大量的实验和详细的分析来证明MiniGAN的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MiniGAN: Toward Informative and Uninformative Image Transferring
This article proposes a generative adversarial networks (MiniGAN) to tackle both informative and uninformative image transferring. The generator of MiniGAN is based on the structure of StyleGANv2, in which the encoder and style transform block are proposed to extract the high-level feature maps of the source image and capture the latent representation of the target image, respectively. This information guides the generator for the final image generation. The proposed MiniGAN outperforms other models in style transferring while preserving the color information on the informative images. To test the performance of MiniGAN on the uninformative images, a new data set consisting of 10,000 fashion hand drawings is proposed. Extensive experiments and detailed analysis are presented to demonstrate the performance of MiniGAN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AATCC Journal of Research
AATCC Journal of Research MATERIALS SCIENCE, TEXTILES-
CiteScore
1.30
自引率
0.00%
发文量
34
期刊介绍: AATCC Journal of Research. This textile research journal has a broad scope: from advanced materials, fibers, and textile and polymer chemistry, to color science, apparel design, and sustainability. Now indexed by Science Citation Index Extended (SCIE) and discoverable in the Clarivate Analytics Web of Science Core Collection! The Journal’s impact factor is available in Journal Citation Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信