N. Bhaskar, Priyanka Tupe-Waghmare, Shobha S. Nikam, Rakhi Khedkar
{"title":"利用监督学习技术实现肾脏疾病的计算机辅助自动检测","authors":"N. Bhaskar, Priyanka Tupe-Waghmare, Shobha S. Nikam, Rakhi Khedkar","doi":"10.11591/ijece.v13i5.pp5932-5941","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient home-based system for monitoring chronic kidney disease (CKD). As non-invasive disease identification approaches are gaining popularity nowadays, the proposed system is designed to detect kidney disease from saliva samples. Salivary diagnosis has advanced its popularity over the last few years due to the non-invasive sample collection technique. The use of salivary components to monitor and detect kidney disease is investigated through an experimental investigation. We measured the amount of urea in the saliva sample to detect CKD. Further, this article explains the use of predictive analysis using machine learning techniques and data analytics in remote healthcare management. The proposed health monitoring system classified the samples with an accuracy of 97.1%. With internet facilities available everywhere, this methodology can offer better healthcare services, with real-time decision support in remote monitoring platform.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computer-aided automated detection of kidney disease using supervised learning technique\",\"authors\":\"N. Bhaskar, Priyanka Tupe-Waghmare, Shobha S. Nikam, Rakhi Khedkar\",\"doi\":\"10.11591/ijece.v13i5.pp5932-5941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an efficient home-based system for monitoring chronic kidney disease (CKD). As non-invasive disease identification approaches are gaining popularity nowadays, the proposed system is designed to detect kidney disease from saliva samples. Salivary diagnosis has advanced its popularity over the last few years due to the non-invasive sample collection technique. The use of salivary components to monitor and detect kidney disease is investigated through an experimental investigation. We measured the amount of urea in the saliva sample to detect CKD. Further, this article explains the use of predictive analysis using machine learning techniques and data analytics in remote healthcare management. The proposed health monitoring system classified the samples with an accuracy of 97.1%. With internet facilities available everywhere, this methodology can offer better healthcare services, with real-time decision support in remote monitoring platform.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5932-5941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5932-5941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Computer-aided automated detection of kidney disease using supervised learning technique
In this paper, we propose an efficient home-based system for monitoring chronic kidney disease (CKD). As non-invasive disease identification approaches are gaining popularity nowadays, the proposed system is designed to detect kidney disease from saliva samples. Salivary diagnosis has advanced its popularity over the last few years due to the non-invasive sample collection technique. The use of salivary components to monitor and detect kidney disease is investigated through an experimental investigation. We measured the amount of urea in the saliva sample to detect CKD. Further, this article explains the use of predictive analysis using machine learning techniques and data analytics in remote healthcare management. The proposed health monitoring system classified the samples with an accuracy of 97.1%. With internet facilities available everywhere, this methodology can offer better healthcare services, with real-time decision support in remote monitoring platform.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]