基于简单大暴雨前优化算法的电子健康系统敏感医疗数据隐藏

Q2 Computer Science
Madhavi M, S. Dr.T., K. Dr.G.
{"title":"基于简单大暴雨前优化算法的电子健康系统敏感医疗数据隐藏","authors":"Madhavi M, S. Dr.T., K. Dr.G.","doi":"10.58346/jisis.2023.i2.011","DOIUrl":null,"url":null,"abstract":"Privacy has become a significant factor of e-Health system in the area of data mining termed as Privacy preserving data mining (PPDM) as it can uncover underlying rules and hide sensitive data for data sanitization. Various algorithms and heuristics have been studied to hide sensitive data using transaction removal. However, they are facing challenges to attain the reasonable side effects. Thus, rain optimization algorithm (ROA) based sensitive data hiding techniques is proposed in this paper. Using this algorithm, suitable transactions to be removed are selected. Besides, in this work, ROA based two frameworks are designed for data sanitization that are simple ROA to remove transaction (sROA2RT) and pre-large ROA to remove transaction (pROA2RT). In this algorithm, fitness is evaluated based on four side effects such as hiding failure, artificial cost, missing cost and dissimilarity of database. The proposed frameworks are evaluated using three e-Health datasets. Compared to previous frameworks, the proposed frameworks attain reasonable side effects.","PeriodicalId":36718,"journal":{"name":"Journal of Internet Services and Information Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hiding Sensitive Medical Data Using Simple and Pre-Large Rain Optimization Algorithm through Data Removal for E-Health System\",\"authors\":\"Madhavi M, S. Dr.T., K. Dr.G.\",\"doi\":\"10.58346/jisis.2023.i2.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Privacy has become a significant factor of e-Health system in the area of data mining termed as Privacy preserving data mining (PPDM) as it can uncover underlying rules and hide sensitive data for data sanitization. Various algorithms and heuristics have been studied to hide sensitive data using transaction removal. However, they are facing challenges to attain the reasonable side effects. Thus, rain optimization algorithm (ROA) based sensitive data hiding techniques is proposed in this paper. Using this algorithm, suitable transactions to be removed are selected. Besides, in this work, ROA based two frameworks are designed for data sanitization that are simple ROA to remove transaction (sROA2RT) and pre-large ROA to remove transaction (pROA2RT). In this algorithm, fitness is evaluated based on four side effects such as hiding failure, artificial cost, missing cost and dissimilarity of database. The proposed frameworks are evaluated using three e-Health datasets. Compared to previous frameworks, the proposed frameworks attain reasonable side effects.\",\"PeriodicalId\":36718,\"journal\":{\"name\":\"Journal of Internet Services and Information Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Internet Services and Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58346/jisis.2023.i2.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Services and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58346/jisis.2023.i2.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

在被称为隐私保护数据挖掘(PPDM)的数据挖掘领域,隐私已成为电子健康系统的一个重要因素,因为它可以揭示潜在规则并隐藏敏感数据以进行数据净化。已经研究了使用事务移除来隐藏敏感数据的各种算法和启发式方法。然而,它们面临着获得合理副作用的挑战。因此,本文提出了基于降雨优化算法的敏感数据隐藏技术。使用该算法,可以选择要删除的合适事务。此外,在这项工作中,设计了两个基于ROA的数据净化框架,即简单的ROA2RT和预大型ROA2RT。在该算法中,基于隐藏失败、人工成本、丢失成本和数据库的不相似性四个副作用来评估适应度。使用三个电子健康数据集对拟议的框架进行了评估。与以前的框架相比,拟议的框架产生了合理的副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hiding Sensitive Medical Data Using Simple and Pre-Large Rain Optimization Algorithm through Data Removal for E-Health System
Privacy has become a significant factor of e-Health system in the area of data mining termed as Privacy preserving data mining (PPDM) as it can uncover underlying rules and hide sensitive data for data sanitization. Various algorithms and heuristics have been studied to hide sensitive data using transaction removal. However, they are facing challenges to attain the reasonable side effects. Thus, rain optimization algorithm (ROA) based sensitive data hiding techniques is proposed in this paper. Using this algorithm, suitable transactions to be removed are selected. Besides, in this work, ROA based two frameworks are designed for data sanitization that are simple ROA to remove transaction (sROA2RT) and pre-large ROA to remove transaction (pROA2RT). In this algorithm, fitness is evaluated based on four side effects such as hiding failure, artificial cost, missing cost and dissimilarity of database. The proposed frameworks are evaluated using three e-Health datasets. Compared to previous frameworks, the proposed frameworks attain reasonable side effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Internet Services and Information Security
Journal of Internet Services and Information Security Computer Science-Computer Science (miscellaneous)
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信