基于灰色关联分析法的拆分重组微混合器多目标优化

IF 2.7 Q2 MANAGEMENT
A. Shinde, R. Patil
{"title":"基于灰色关联分析法的拆分重组微混合器多目标优化","authors":"A. Shinde, R. Patil","doi":"10.1108/ijqrm-06-2021-0186","DOIUrl":null,"url":null,"abstract":"PurposeThe effective, efficient and optimal design of micromixer is the need in the field of biochemical and biomedical diagnostic systems.Design/methodology/approachIn this paper, multi-objective optimization of split and recombine micromixer (SRM) with different geometrical configurations is carried out. The finite element method-based three-dimensional models are prepared and analyzed using COMSOL Multiphysics 5.0 Software. Taguchi’s design of experiment (DoE), main effect plot analysis, ANOVA and grey relational analysis (GRA) method are used to find out optimum condition. The five geometrical parameters with three levels, namely, angle between inlets, pillar size, pillar shape, aspect ratio and constriction height of SRM are considered as design variables. The mixing index (MXI) and pressure drop (∆P) are considered objective functions.FindingsThe MXI is significantly influenced by pillar shape and aspect ratio, whereas the pressure drop (∆P) by constriction height. Maximum MXI (0.97) with minimum pressure drop (64,587 Pa) is the optimal conditions and obtained at 180 deg angle between inlets, 50 µm of pillar size, 1.5 of aspect ratio, 100 µm of constriction height and ellipse shape pillar cross-section, respectively.Research limitations/implicationsThis optimized SRM can be combined with lab-on-a-chip for biochemical and biomedical analysis.Originality/valueThis work is useful to obtain optimal geometry of SRM for getting efficient performance of micromixer.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization of split and recombine micromixer using grey relational analysis method\",\"authors\":\"A. Shinde, R. Patil\",\"doi\":\"10.1108/ijqrm-06-2021-0186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe effective, efficient and optimal design of micromixer is the need in the field of biochemical and biomedical diagnostic systems.Design/methodology/approachIn this paper, multi-objective optimization of split and recombine micromixer (SRM) with different geometrical configurations is carried out. The finite element method-based three-dimensional models are prepared and analyzed using COMSOL Multiphysics 5.0 Software. Taguchi’s design of experiment (DoE), main effect plot analysis, ANOVA and grey relational analysis (GRA) method are used to find out optimum condition. The five geometrical parameters with three levels, namely, angle between inlets, pillar size, pillar shape, aspect ratio and constriction height of SRM are considered as design variables. The mixing index (MXI) and pressure drop (∆P) are considered objective functions.FindingsThe MXI is significantly influenced by pillar shape and aspect ratio, whereas the pressure drop (∆P) by constriction height. Maximum MXI (0.97) with minimum pressure drop (64,587 Pa) is the optimal conditions and obtained at 180 deg angle between inlets, 50 µm of pillar size, 1.5 of aspect ratio, 100 µm of constriction height and ellipse shape pillar cross-section, respectively.Research limitations/implicationsThis optimized SRM can be combined with lab-on-a-chip for biochemical and biomedical analysis.Originality/valueThis work is useful to obtain optimal geometry of SRM for getting efficient performance of micromixer.\",\"PeriodicalId\":14193,\"journal\":{\"name\":\"International Journal of Quality & Reliability Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quality & Reliability Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijqrm-06-2021-0186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-06-2021-0186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

摘要

目的高效、高效、优化地设计微混合器是生物化学和生物医学诊断系统领域的需要。设计/方法/途径本文对不同几何构型的分离重组微混合器(SRM)进行了多目标优化。利用COMSOL Multiphysics 5.0软件编制并分析了基于有限元法的三维模型。采用田口实验设计法、主效图分析法、方差分析法和灰色关联分析法找出了最佳工艺条件。将SRM的进口角、立柱尺寸、立柱形状、纵横比和收缩高度这五个三级几何参数作为设计变量。混合指数(MXI)和压降(∆P)被视为目标函数。发现MXI受支柱形状和纵横比的显著影响,而压降(∆P)受收缩高度的影响。最大MXI(0.97)和最小压降(64587Pa)是最佳条件,分别在入口之间的180度角、50µm的支柱尺寸、1.5的纵横比、100µm的收缩高度和椭圆形支柱横截面下获得。研究局限性/含义这种优化的SRM可以与芯片实验室相结合,用于生化和生物医学分析。原创性/价值这项工作有助于获得SRM的最佳几何形状,以获得微混合器的高效性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective optimization of split and recombine micromixer using grey relational analysis method
PurposeThe effective, efficient and optimal design of micromixer is the need in the field of biochemical and biomedical diagnostic systems.Design/methodology/approachIn this paper, multi-objective optimization of split and recombine micromixer (SRM) with different geometrical configurations is carried out. The finite element method-based three-dimensional models are prepared and analyzed using COMSOL Multiphysics 5.0 Software. Taguchi’s design of experiment (DoE), main effect plot analysis, ANOVA and grey relational analysis (GRA) method are used to find out optimum condition. The five geometrical parameters with three levels, namely, angle between inlets, pillar size, pillar shape, aspect ratio and constriction height of SRM are considered as design variables. The mixing index (MXI) and pressure drop (∆P) are considered objective functions.FindingsThe MXI is significantly influenced by pillar shape and aspect ratio, whereas the pressure drop (∆P) by constriction height. Maximum MXI (0.97) with minimum pressure drop (64,587 Pa) is the optimal conditions and obtained at 180 deg angle between inlets, 50 µm of pillar size, 1.5 of aspect ratio, 100 µm of constriction height and ellipse shape pillar cross-section, respectively.Research limitations/implicationsThis optimized SRM can be combined with lab-on-a-chip for biochemical and biomedical analysis.Originality/valueThis work is useful to obtain optimal geometry of SRM for getting efficient performance of micromixer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
12.00%
发文量
53
期刊介绍: In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信