Y. E. Ryzhkova, Varvara M. Kalashnikova, F. V. Ryzhkov, A. N. Fakhrutdinov, M. Elinson
{"title":"4a’-羟基-3’,3’,5,6’,6’,7-六甲基-3’,4’,4a’,6‘,7’,9a’-六氢螺环[吲哚-3,9’-黄嘌呤]-1’,2,8’(1H,2’H,5’H)-三酮","authors":"Y. E. Ryzhkova, Varvara M. Kalashnikova, F. V. Ryzhkov, A. N. Fakhrutdinov, M. Elinson","doi":"10.3390/m1721","DOIUrl":null,"url":null,"abstract":"Pseudo-multicomponent reactions (Pseudo-MCRs) have led to a variety of compounds with interesting biological properties, especially desirable in the pharmaceutical industry. The isatin nucleus could be considered a privileged scaffold for the design of biologically active substances. Dimedone is an interesting and versatile molecule for most organic transformations, especially one-pot and multicomponent reactions. Xanthene derivatives are still an attractive research field for both academia investigations and industry. In this investigation, a simple and efficient tandem Knoevenagel–Michael protocol with subsequent cyclization for the synthesis of the previously unknown 4a’-hydroxy-3′,3′,5,6′,6′,7-hexamethyl-3′,4′,4a’,6′,7′,9a′-hexahydrospiro[indole-3,9′-xanthene]-1′,2,8′(1H,2′H,5′H)-trione was elaborated. The suggested method is based on the pseudo-MCR of 5,7-dimethylisatin and dimedone. The structure of the earlier unknown compound was proven using 1H, 13C-NMR, and IR spectroscopy, mass spectrometry, and elemental analysis. To compare the developed protocol with the existing ones, unsubstituted spiro[indole-3,9′-xanthene] was synthesized. Its structure has been proven using two-dimensional (2D) NMR spectroscopy techniques.","PeriodicalId":18761,"journal":{"name":"Molbank","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4a’-Hydroxy-3′,3′,5,6′,6′,7-hexamethyl-3′,4′,4a’,6′,7′,9a′-hexahydrospiro[indole-3,9′-xanthene]-1′,2,8′(1H,2′H,5′H)-trione\",\"authors\":\"Y. E. Ryzhkova, Varvara M. Kalashnikova, F. V. Ryzhkov, A. N. Fakhrutdinov, M. Elinson\",\"doi\":\"10.3390/m1721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pseudo-multicomponent reactions (Pseudo-MCRs) have led to a variety of compounds with interesting biological properties, especially desirable in the pharmaceutical industry. The isatin nucleus could be considered a privileged scaffold for the design of biologically active substances. Dimedone is an interesting and versatile molecule for most organic transformations, especially one-pot and multicomponent reactions. Xanthene derivatives are still an attractive research field for both academia investigations and industry. In this investigation, a simple and efficient tandem Knoevenagel–Michael protocol with subsequent cyclization for the synthesis of the previously unknown 4a’-hydroxy-3′,3′,5,6′,6′,7-hexamethyl-3′,4′,4a’,6′,7′,9a′-hexahydrospiro[indole-3,9′-xanthene]-1′,2,8′(1H,2′H,5′H)-trione was elaborated. The suggested method is based on the pseudo-MCR of 5,7-dimethylisatin and dimedone. The structure of the earlier unknown compound was proven using 1H, 13C-NMR, and IR spectroscopy, mass spectrometry, and elemental analysis. To compare the developed protocol with the existing ones, unsubstituted spiro[indole-3,9′-xanthene] was synthesized. Its structure has been proven using two-dimensional (2D) NMR spectroscopy techniques.\",\"PeriodicalId\":18761,\"journal\":{\"name\":\"Molbank\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molbank\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/m1721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molbank","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/m1721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Pseudo-multicomponent reactions (Pseudo-MCRs) have led to a variety of compounds with interesting biological properties, especially desirable in the pharmaceutical industry. The isatin nucleus could be considered a privileged scaffold for the design of biologically active substances. Dimedone is an interesting and versatile molecule for most organic transformations, especially one-pot and multicomponent reactions. Xanthene derivatives are still an attractive research field for both academia investigations and industry. In this investigation, a simple and efficient tandem Knoevenagel–Michael protocol with subsequent cyclization for the synthesis of the previously unknown 4a’-hydroxy-3′,3′,5,6′,6′,7-hexamethyl-3′,4′,4a’,6′,7′,9a′-hexahydrospiro[indole-3,9′-xanthene]-1′,2,8′(1H,2′H,5′H)-trione was elaborated. The suggested method is based on the pseudo-MCR of 5,7-dimethylisatin and dimedone. The structure of the earlier unknown compound was proven using 1H, 13C-NMR, and IR spectroscopy, mass spectrometry, and elemental analysis. To compare the developed protocol with the existing ones, unsubstituted spiro[indole-3,9′-xanthene] was synthesized. Its structure has been proven using two-dimensional (2D) NMR spectroscopy techniques.