{"title":"电磁辐射场作用满足的一个普遍条件","authors":"V. Cooray, G. Cooray","doi":"10.4236/JEMAA.2017.911015","DOIUrl":null,"url":null,"abstract":"The action (the product of radiated energy and the time of emission) of the radiation fields generated by four types of radiators, namely, short electric dipole, small magnetic dipole, travelling wave antenna and bi-conical antenna is investigated with special reference to the charge associated with the current waveform which is responsible for the radiation. The results obtained can be summarized by the order of magnitude inequality where A is the action (product of the radiated energy and the time of emission), h is the Planck constant, q is the charge associated with the current that gave rise to the radiation and e is the electronic charge. The condition is obtained when the length of the antenna and its radius are pushed to its extreme natural limits. Based on the results obtained here and elsewhere, it is suggested that this inequality is valid in general for electromagnetic radiation fields as predicted by classical electrodynamics.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":"09 1","pages":"167-182"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Universal Condition Satisfied by the Action of Electromagnetic Radiation Fields\",\"authors\":\"V. Cooray, G. Cooray\",\"doi\":\"10.4236/JEMAA.2017.911015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The action (the product of radiated energy and the time of emission) of the radiation fields generated by four types of radiators, namely, short electric dipole, small magnetic dipole, travelling wave antenna and bi-conical antenna is investigated with special reference to the charge associated with the current waveform which is responsible for the radiation. The results obtained can be summarized by the order of magnitude inequality where A is the action (product of the radiated energy and the time of emission), h is the Planck constant, q is the charge associated with the current that gave rise to the radiation and e is the electronic charge. The condition is obtained when the length of the antenna and its radius are pushed to its extreme natural limits. Based on the results obtained here and elsewhere, it is suggested that this inequality is valid in general for electromagnetic radiation fields as predicted by classical electrodynamics.\",\"PeriodicalId\":58231,\"journal\":{\"name\":\"电磁分析与应用期刊(英文)\",\"volume\":\"09 1\",\"pages\":\"167-182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电磁分析与应用期刊(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/JEMAA.2017.911015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电磁分析与应用期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JEMAA.2017.911015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Universal Condition Satisfied by the Action of Electromagnetic Radiation Fields
The action (the product of radiated energy and the time of emission) of the radiation fields generated by four types of radiators, namely, short electric dipole, small magnetic dipole, travelling wave antenna and bi-conical antenna is investigated with special reference to the charge associated with the current waveform which is responsible for the radiation. The results obtained can be summarized by the order of magnitude inequality where A is the action (product of the radiated energy and the time of emission), h is the Planck constant, q is the charge associated with the current that gave rise to the radiation and e is the electronic charge. The condition is obtained when the length of the antenna and its radius are pushed to its extreme natural limits. Based on the results obtained here and elsewhere, it is suggested that this inequality is valid in general for electromagnetic radiation fields as predicted by classical electrodynamics.