8阶三次图的完美3色环

IF 0.5 Q3 MATHEMATICS
M. Alaeiyan, A. Mehrabani
{"title":"8阶三次图的完美3色环","authors":"M. Alaeiyan, A. Mehrabani","doi":"10.52737/18291163-2018.10.2-1-11","DOIUrl":null,"url":null,"abstract":"Perfect coloring is a generalization of the notion of completely regular codes, given by Delsarte. A perfect $m$-coloring of a graph $G$ with $m$ colors is a partition of the vertex set of $G$ into m parts $A_1$, $\\dots$, $A_m$ such that, for all $ i,j\\in \\lbrace 1,\\cdots ,m\\rbrace $, every vertex of $A_i$ is adjacent to the same number of vertices, namely, $a_{ij}$ vertices, of $A_j$ . The matrix $A=(a_{ij})_{i,j\\in \\lbrace 1,\\cdots ,m\\rbrace }$ is called the parameter matrix. We study the perfect 3-colorings (also known as the equitable partitions into three parts) of the cubic graphs of order $8$. In particular, we classify all the realizable parameter matrices of perfect 3-colorings for the cubic graphs of order 8.","PeriodicalId":42323,"journal":{"name":"Armenian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Perfect 3-colorings of Cubic Graphs of Order 8\",\"authors\":\"M. Alaeiyan, A. Mehrabani\",\"doi\":\"10.52737/18291163-2018.10.2-1-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perfect coloring is a generalization of the notion of completely regular codes, given by Delsarte. A perfect $m$-coloring of a graph $G$ with $m$ colors is a partition of the vertex set of $G$ into m parts $A_1$, $\\\\dots$, $A_m$ such that, for all $ i,j\\\\in \\\\lbrace 1,\\\\cdots ,m\\\\rbrace $, every vertex of $A_i$ is adjacent to the same number of vertices, namely, $a_{ij}$ vertices, of $A_j$ . The matrix $A=(a_{ij})_{i,j\\\\in \\\\lbrace 1,\\\\cdots ,m\\\\rbrace }$ is called the parameter matrix. We study the perfect 3-colorings (also known as the equitable partitions into three parts) of the cubic graphs of order $8$. In particular, we classify all the realizable parameter matrices of perfect 3-colorings for the cubic graphs of order 8.\",\"PeriodicalId\":42323,\"journal\":{\"name\":\"Armenian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Armenian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52737/18291163-2018.10.2-1-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Armenian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52737/18291163-2018.10.2-1-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

完全着色是德尔萨特给出的完全正则码概念的推广。具有$m$颜色的图$G$的完美$m$着色是将$G$顶点集划分为m个部分$A_1$、$\dots$、$A_m$,使得对于所有$i,j\in\lbrrace 1,\cdots,m\rbrace$,$A_i$的每个顶点都与相同数量的顶点相邻,即$A_j$的$A_{ij}$顶点。矩阵$A=(A_{ij})_{i,j\in\lbrace 1,\cdots,m\rbrace}$称为参数矩阵。我们研究$8$阶三次图的完全3-色环(也称为三部分的公平划分)。特别地,我们对8阶三次图的完美3-色环的所有可实现参数矩阵进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perfect 3-colorings of Cubic Graphs of Order 8
Perfect coloring is a generalization of the notion of completely regular codes, given by Delsarte. A perfect $m$-coloring of a graph $G$ with $m$ colors is a partition of the vertex set of $G$ into m parts $A_1$, $\dots$, $A_m$ such that, for all $ i,j\in \lbrace 1,\cdots ,m\rbrace $, every vertex of $A_i$ is adjacent to the same number of vertices, namely, $a_{ij}$ vertices, of $A_j$ . The matrix $A=(a_{ij})_{i,j\in \lbrace 1,\cdots ,m\rbrace }$ is called the parameter matrix. We study the perfect 3-colorings (also known as the equitable partitions into three parts) of the cubic graphs of order $8$. In particular, we classify all the realizable parameter matrices of perfect 3-colorings for the cubic graphs of order 8.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
13
审稿时长
48 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信