有界域中具有Hardy势的半线性双曲不等式

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
M. Jleli, B. Samet
{"title":"有界域中具有Hardy势的半线性双曲不等式","authors":"M. Jleli, B. Samet","doi":"10.3233/asy-231854","DOIUrl":null,"url":null,"abstract":"We consider hyperbolic inequalities with Hardy potential u t t − Δ u + λ | x | 2 u ⩾ | x | − a | u | p in  ( 0 , ∞ ) × B 1 ∖ { 0 } , u ( t , x ) ⩾ f ( x ) on  ( 0 , ∞ ) × ∂ B 1 , where B 1 is the unit ball in R N , N ⩾ 3, λ > − ( N − 2 2 ) 2 , a ⩾ 0, p > 1 and f is a nontrivial L 1 -function. We study separately the cases: λ = 0, − ( N − 2 2 ) 2 < λ < 0 and λ > 0. For each case, we obtain an optimal criterium for the nonexistence of weak solutions. Our study yields naturally optimal nonexistence results for the corresponding stationary problem. The novelty of this work lies in two facts: (i) To the best of our knowledge, in all previous works dealing with nonexistence results for evolution equations with Hardy potential in a bounded domain, only the parabolic case has been investigated, making use of some comparison principles. (ii) To the best of our knowledge, in all previous works, the issue of nonexistence has been studied only in the case of positive solutions. In this paper, there is no restriction on the sign of solutions.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semilinear hyperbolic inequalities with Hardy potential in a bounded domain\",\"authors\":\"M. Jleli, B. Samet\",\"doi\":\"10.3233/asy-231854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider hyperbolic inequalities with Hardy potential u t t − Δ u + λ | x | 2 u ⩾ | x | − a | u | p in  ( 0 , ∞ ) × B 1 ∖ { 0 } , u ( t , x ) ⩾ f ( x ) on  ( 0 , ∞ ) × ∂ B 1 , where B 1 is the unit ball in R N , N ⩾ 3, λ > − ( N − 2 2 ) 2 , a ⩾ 0, p > 1 and f is a nontrivial L 1 -function. We study separately the cases: λ = 0, − ( N − 2 2 ) 2 < λ < 0 and λ > 0. For each case, we obtain an optimal criterium for the nonexistence of weak solutions. Our study yields naturally optimal nonexistence results for the corresponding stationary problem. The novelty of this work lies in two facts: (i) To the best of our knowledge, in all previous works dealing with nonexistence results for evolution equations with Hardy potential in a bounded domain, only the parabolic case has been investigated, making use of some comparison principles. (ii) To the best of our knowledge, in all previous works, the issue of nonexistence has been studied only in the case of positive solutions. In this paper, there is no restriction on the sign of solutions.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231854\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231854","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑具有Hardy势u t−Δu+λ|x|2u⩾|x|−a|u|p在(0,∞)×B1∖{0}上的双曲不等式,u(t,x)\10878;f(x)在(0)×B1上,其中B1是RN,N \10878 3,λ>−(N−2)2,a \10878\0,p>1中的单位球,f是非平凡的L1-函数。我们分别研究了以下情况:λ=0,−(N−2)2<λ<0和λ>0。对于每种情况,我们都得到了弱解不存在的最优准则。我们的研究得到了相应平稳问题的自然最优不存在性结果。这项工作的新颖性在于两个事实:(i)据我们所知,在以前所有关于有界域中具有Hardy势的进化方程的不存在结果的工作中,利用一些比较原理,只研究了抛物型情况。(ii)据我们所知,在以前的所有工作中,只在正解的情况下研究了不存在的问题。在本文中,解的符号不受限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semilinear hyperbolic inequalities with Hardy potential in a bounded domain
We consider hyperbolic inequalities with Hardy potential u t t − Δ u + λ | x | 2 u ⩾ | x | − a | u | p in  ( 0 , ∞ ) × B 1 ∖ { 0 } , u ( t , x ) ⩾ f ( x ) on  ( 0 , ∞ ) × ∂ B 1 , where B 1 is the unit ball in R N , N ⩾ 3, λ > − ( N − 2 2 ) 2 , a ⩾ 0, p > 1 and f is a nontrivial L 1 -function. We study separately the cases: λ = 0, − ( N − 2 2 ) 2 < λ < 0 and λ > 0. For each case, we obtain an optimal criterium for the nonexistence of weak solutions. Our study yields naturally optimal nonexistence results for the corresponding stationary problem. The novelty of this work lies in two facts: (i) To the best of our knowledge, in all previous works dealing with nonexistence results for evolution equations with Hardy potential in a bounded domain, only the parabolic case has been investigated, making use of some comparison principles. (ii) To the best of our knowledge, in all previous works, the issue of nonexistence has been studied only in the case of positive solutions. In this paper, there is no restriction on the sign of solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信