H. Wan, Yanni An, Juanping Qu, Chonghui Zhang, Jiwei Xue, Sen Wang, Xianzhong Bu
{"title":"基于辉钼矿粒度效应的浮选动力学模型优化方法研究","authors":"H. Wan, Yanni An, Juanping Qu, Chonghui Zhang, Jiwei Xue, Sen Wang, Xianzhong Bu","doi":"10.37190/ppmp/163004","DOIUrl":null,"url":null,"abstract":"Flotation kinetic models can be applied to describe the flotation process and to predict mineral recoveries. However, the size composition of the target minerals in the feed ore fluctuates considerably, resulting in insufficient accuracy with flotation kinetic models. There have been many studies that focus on the investigation of flotation kinetics with different particle sizes, while the optimization methods for flotation kinetic models based on particle size effects have not been reported. In this paper, flotation tests, optical microscope observations, and particle size analysis were used to identify the reasons for the decrease in accuracy of the flotation kinetic model due to changes in the composition of molybdenite particle size. Additionally, an optimization method for the flotation kinetic model was developed based on the particle size effect. The test results show that the accuracy of the flotation kinetic model for fixed particle size minerals is very high, but the predicted results for flotation recoveries of different particle size mineral mixtures have large deviations. The poor accuracy might be due to the autogenous carrier effect caused by the particle size composition fluctuating considerably. The optimization method for the flotation kinetic model is based on the particle size effect. The model can accurately describe the flotation process of molybdenite with different size compositions of molybdenite and predict the flotation recovery of molybdenite.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on optimization method of flotation kinetic model based on molybdenite particle size effect\",\"authors\":\"H. Wan, Yanni An, Juanping Qu, Chonghui Zhang, Jiwei Xue, Sen Wang, Xianzhong Bu\",\"doi\":\"10.37190/ppmp/163004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flotation kinetic models can be applied to describe the flotation process and to predict mineral recoveries. However, the size composition of the target minerals in the feed ore fluctuates considerably, resulting in insufficient accuracy with flotation kinetic models. There have been many studies that focus on the investigation of flotation kinetics with different particle sizes, while the optimization methods for flotation kinetic models based on particle size effects have not been reported. In this paper, flotation tests, optical microscope observations, and particle size analysis were used to identify the reasons for the decrease in accuracy of the flotation kinetic model due to changes in the composition of molybdenite particle size. Additionally, an optimization method for the flotation kinetic model was developed based on the particle size effect. The test results show that the accuracy of the flotation kinetic model for fixed particle size minerals is very high, but the predicted results for flotation recoveries of different particle size mineral mixtures have large deviations. The poor accuracy might be due to the autogenous carrier effect caused by the particle size composition fluctuating considerably. The optimization method for the flotation kinetic model is based on the particle size effect. The model can accurately describe the flotation process of molybdenite with different size compositions of molybdenite and predict the flotation recovery of molybdenite.\",\"PeriodicalId\":49137,\"journal\":{\"name\":\"Physicochemical Problems of Mineral Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physicochemical Problems of Mineral Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.37190/ppmp/163004\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/163004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Research on optimization method of flotation kinetic model based on molybdenite particle size effect
Flotation kinetic models can be applied to describe the flotation process and to predict mineral recoveries. However, the size composition of the target minerals in the feed ore fluctuates considerably, resulting in insufficient accuracy with flotation kinetic models. There have been many studies that focus on the investigation of flotation kinetics with different particle sizes, while the optimization methods for flotation kinetic models based on particle size effects have not been reported. In this paper, flotation tests, optical microscope observations, and particle size analysis were used to identify the reasons for the decrease in accuracy of the flotation kinetic model due to changes in the composition of molybdenite particle size. Additionally, an optimization method for the flotation kinetic model was developed based on the particle size effect. The test results show that the accuracy of the flotation kinetic model for fixed particle size minerals is very high, but the predicted results for flotation recoveries of different particle size mineral mixtures have large deviations. The poor accuracy might be due to the autogenous carrier effect caused by the particle size composition fluctuating considerably. The optimization method for the flotation kinetic model is based on the particle size effect. The model can accurately describe the flotation process of molybdenite with different size compositions of molybdenite and predict the flotation recovery of molybdenite.
期刊介绍:
Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy.
Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal.
Topics of interest
Analytical techniques and applied mineralogy
Computer applications
Comminution, classification and sorting
Froth flotation
Solid-liquid separation
Gravity concentration
Magnetic and electric separation
Hydro and biohydrometallurgy
Extractive metallurgy
Recycling and mineral wastes
Environmental aspects of mineral processing
and other mineral processing related subjects.