双边加权移位算子的超循环移位因子分解

IF 0.7 4区 数学 Q2 MATHEMATICS
Kit C. Chan, Rebecca Sanders
{"title":"双边加权移位算子的超循环移位因子分解","authors":"Kit C. Chan, Rebecca Sanders","doi":"10.7900/jot.2019jul22.2284","DOIUrl":null,"url":null,"abstract":"Taking the perspective that a bilateral weighted shift is an operator that shifts some two-sided canonical basic sequence of ℓp(Z), with 1⩽p<∞, we show that every bilateral weighted shift on ℓp(Z) has a factorization T=AB, where A and B are hypercyclic bilateral weighted shifts. For the case when T is invertible, both shifts A and B may be selected to be invertible as well. Moreover, we show analogous hypercyclic factorization results for diagonal operators with nonzero diagonal entries.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hypercyclic shift factorizations for bilateral weighted shift operators\",\"authors\":\"Kit C. Chan, Rebecca Sanders\",\"doi\":\"10.7900/jot.2019jul22.2284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taking the perspective that a bilateral weighted shift is an operator that shifts some two-sided canonical basic sequence of ℓp(Z), with 1⩽p<∞, we show that every bilateral weighted shift on ℓp(Z) has a factorization T=AB, where A and B are hypercyclic bilateral weighted shifts. For the case when T is invertible, both shifts A and B may be selected to be invertible as well. Moreover, we show analogous hypercyclic factorization results for diagonal operators with nonzero diagonal entries.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2019jul22.2284\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2019jul22.2284","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

从双边加权移位是一个算子的角度来看,它移位了ℓp(Z),在1⩽p<∞的情况下,我们证明了ℓp(Z)具有因子分解T=AB,其中a和B是超循环双边加权移位。对于T可逆的情况,移位A和移位B也可以被选择为可逆。此外,我们还给出了具有非零对角项的对角算子的类似超循环因子分解结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypercyclic shift factorizations for bilateral weighted shift operators
Taking the perspective that a bilateral weighted shift is an operator that shifts some two-sided canonical basic sequence of ℓp(Z), with 1⩽p<∞, we show that every bilateral weighted shift on ℓp(Z) has a factorization T=AB, where A and B are hypercyclic bilateral weighted shifts. For the case when T is invertible, both shifts A and B may be selected to be invertible as well. Moreover, we show analogous hypercyclic factorization results for diagonal operators with nonzero diagonal entries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信