Lambert级数的复活展开与迭代Eisenstein积分

IF 1.2 3区 数学 Q1 MATHEMATICS
Daniele Dorigoni, A. Kleinschmidt
{"title":"Lambert级数的复活展开与迭代Eisenstein积分","authors":"Daniele Dorigoni, A. Kleinschmidt","doi":"10.4310/cntp.2021.v15.n1.a1","DOIUrl":null,"url":null,"abstract":"We consider special Lambert series as generating functions of divisor sums and determine their complete transseries expansion near rational roots of unity. Our methods also yield new insights into the Laurent expansions and modularity properties of iterated Eisenstein integrals that have recently attracted attention in the context of certain period integrals and string theory scattering amplitudes.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Resurgent expansion of Lambert series and iterated Eisenstein integrals\",\"authors\":\"Daniele Dorigoni, A. Kleinschmidt\",\"doi\":\"10.4310/cntp.2021.v15.n1.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider special Lambert series as generating functions of divisor sums and determine their complete transseries expansion near rational roots of unity. Our methods also yield new insights into the Laurent expansions and modularity properties of iterated Eisenstein integrals that have recently attracted attention in the context of certain period integrals and string theory scattering amplitudes.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2021.v15.n1.a1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2021.v15.n1.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 19

摘要

我们将特殊的Lambert级数视为除数和的生成函数,并确定它们在单位有理根附近的完全转级数展开。我们的方法还对迭代艾森斯坦积分的洛朗展开式和模块性性质产生了新的见解,这些积分最近在某些周期积分和弦论散射振幅的背景下引起了关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resurgent expansion of Lambert series and iterated Eisenstein integrals
We consider special Lambert series as generating functions of divisor sums and determine their complete transseries expansion near rational roots of unity. Our methods also yield new insights into the Laurent expansions and modularity properties of iterated Eisenstein integrals that have recently attracted attention in the context of certain period integrals and string theory scattering amplitudes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信