一种改进的基于禁忌搜索的帕金森病挖掘最大相关最小冗余特征选择方法

Waheeda Almayyan
{"title":"一种改进的基于禁忌搜索的帕金森病挖掘最大相关最小冗余特征选择方法","authors":"Waheeda Almayyan","doi":"10.5121/ijaia.2020.11201","DOIUrl":null,"url":null,"abstract":"Parkinson’s disease is a complex chronic neurodegenerative disorder of the central nervous system. One of the common symptoms for the Parkinson’s disease subjects, is vocal performance degradation. Patients usually advised to follow personalized rehabilitative treatment sessions with speech experts. Recent research trends aim to investigate the potential of using sustained vowel phonations for replicating the speech experts’ assessments of Parkinson’s disease subjects’ voices. With the purpose of improving the accuracy and efficiency of Parkinson’s disease treatment, this article proposes a two-stage diagnosis model to evaluate an LSVT dataset. Firstly, we propose a modified minimum Redundancy-Maximum Relevance (mRMR) feature selection approach, based on Cuckoo Search and Tabu Search to reduce the features numbers. Secondly, we apply simple random sampling technique to dataset to increase the samples of the minority class. Promisingly, the developed approach obtained a classification Accuracy rate of 95% with 24 features by 10-fold CV method.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/ijaia.2020.11201","citationCount":"4","resultStr":"{\"title\":\"A Modified Maximum Relevance Minimum Redundancy Feature Selection Method Based on Tabu Search For Parkinson’s Disease Mining\",\"authors\":\"Waheeda Almayyan\",\"doi\":\"10.5121/ijaia.2020.11201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parkinson’s disease is a complex chronic neurodegenerative disorder of the central nervous system. One of the common symptoms for the Parkinson’s disease subjects, is vocal performance degradation. Patients usually advised to follow personalized rehabilitative treatment sessions with speech experts. Recent research trends aim to investigate the potential of using sustained vowel phonations for replicating the speech experts’ assessments of Parkinson’s disease subjects’ voices. With the purpose of improving the accuracy and efficiency of Parkinson’s disease treatment, this article proposes a two-stage diagnosis model to evaluate an LSVT dataset. Firstly, we propose a modified minimum Redundancy-Maximum Relevance (mRMR) feature selection approach, based on Cuckoo Search and Tabu Search to reduce the features numbers. Secondly, we apply simple random sampling technique to dataset to increase the samples of the minority class. Promisingly, the developed approach obtained a classification Accuracy rate of 95% with 24 features by 10-fold CV method.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5121/ijaia.2020.11201\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijaia.2020.11201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2020.11201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

帕金森病是一种复杂的中枢神经系统慢性神经退行性疾病。帕金森氏症患者的常见症状之一是声乐表现下降。通常建议患者遵循语音专家的个性化康复治疗课程。最近的研究趋势旨在调查使用持续元音发音来复制语音专家对帕金森病受试者声音的评估的潜力。为了提高帕金森病治疗的准确性和效率,本文提出了一个两阶段诊断模型来评估LSVT数据集。首先,我们提出了一种改进的最小冗余最大相关(mRMR)特征选择方法,该方法基于杜鹃搜索和禁忌搜索来减少特征数量。其次,我们将简单的随机抽样技术应用于数据集,以增加少数类的样本。令人鼓舞的是,所开发的方法通过10倍CV方法获得了24个特征的95%的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified Maximum Relevance Minimum Redundancy Feature Selection Method Based on Tabu Search For Parkinson’s Disease Mining
Parkinson’s disease is a complex chronic neurodegenerative disorder of the central nervous system. One of the common symptoms for the Parkinson’s disease subjects, is vocal performance degradation. Patients usually advised to follow personalized rehabilitative treatment sessions with speech experts. Recent research trends aim to investigate the potential of using sustained vowel phonations for replicating the speech experts’ assessments of Parkinson’s disease subjects’ voices. With the purpose of improving the accuracy and efficiency of Parkinson’s disease treatment, this article proposes a two-stage diagnosis model to evaluate an LSVT dataset. Firstly, we propose a modified minimum Redundancy-Maximum Relevance (mRMR) feature selection approach, based on Cuckoo Search and Tabu Search to reduce the features numbers. Secondly, we apply simple random sampling technique to dataset to increase the samples of the minority class. Promisingly, the developed approach obtained a classification Accuracy rate of 95% with 24 features by 10-fold CV method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信