瑞利-泰勒动力学中浮力和阻力参数的分析

IF 2.6 4区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
D. Hill, S. Abarzhi
{"title":"瑞利-泰勒动力学中浮力和阻力参数的分析","authors":"D. Hill, S. Abarzhi","doi":"10.1051/mmnp/2023027","DOIUrl":null,"url":null,"abstract":"Rayleigh-Taylor instability (RTI) is of critical important in a broad range of natural and industrial processes and is an intellectual challenge for theoretical studies. In this work, we analyze the scale-dependent linear and nonlinear Rayleigh-Taylor (RT) dynamics within the group theory approach. We link the governing equations, through an associated dynamical system based on space groups, to a momentum model based on scaling transformations. In doing so, we precisely derive expressions for the buoyancy and drag parameters of the momentum model, exactly integrate the model equations and determine solutions for bubbles and for spikes in both early-time and late-time regimes. In particular, we focus on the general situation in which the instability is driven by an acceleration having power-law time dependence. Our analysis provides extensive benchmarks for future research.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analysis of the buoyancy and drag parameters in Rayleigh-Taylor dynamics\",\"authors\":\"D. Hill, S. Abarzhi\",\"doi\":\"10.1051/mmnp/2023027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rayleigh-Taylor instability (RTI) is of critical important in a broad range of natural and industrial processes and is an intellectual challenge for theoretical studies. In this work, we analyze the scale-dependent linear and nonlinear Rayleigh-Taylor (RT) dynamics within the group theory approach. We link the governing equations, through an associated dynamical system based on space groups, to a momentum model based on scaling transformations. In doing so, we precisely derive expressions for the buoyancy and drag parameters of the momentum model, exactly integrate the model equations and determine solutions for bubbles and for spikes in both early-time and late-time regimes. In particular, we focus on the general situation in which the instability is driven by an acceleration having power-law time dependence. Our analysis provides extensive benchmarks for future research.\",\"PeriodicalId\":18285,\"journal\":{\"name\":\"Mathematical Modelling of Natural Phenomena\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling of Natural Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/mmnp/2023027\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2023027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

瑞利-泰勒不稳定性(RTI)在广泛的自然和工业过程中具有至关重要的意义,是理论研究的一个智力挑战。在这项工作中,我们在群论方法中分析了与尺度相关的线性和非线性瑞利-泰勒(RT)动力学。我们通过基于空间群的相关动力系统,将控制方程与基于比例变换的动量模型联系起来。在这样做的过程中,我们精确地推导出动量模型的浮力和阻力参数的表达式,精确地积分模型方程,并确定早期和晚期状态下气泡和尖峰的解。特别是,我们关注的是不稳定性是由具有幂律时间依赖性的加速度驱动的一般情况。我们的分析为未来的研究提供了广泛的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analysis of the buoyancy and drag parameters in Rayleigh-Taylor dynamics
Rayleigh-Taylor instability (RTI) is of critical important in a broad range of natural and industrial processes and is an intellectual challenge for theoretical studies. In this work, we analyze the scale-dependent linear and nonlinear Rayleigh-Taylor (RT) dynamics within the group theory approach. We link the governing equations, through an associated dynamical system based on space groups, to a momentum model based on scaling transformations. In doing so, we precisely derive expressions for the buoyancy and drag parameters of the momentum model, exactly integrate the model equations and determine solutions for bubbles and for spikes in both early-time and late-time regimes. In particular, we focus on the general situation in which the instability is driven by an acceleration having power-law time dependence. Our analysis provides extensive benchmarks for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Modelling of Natural Phenomena
Mathematical Modelling of Natural Phenomena MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
5.20
自引率
0.00%
发文量
46
审稿时长
6-12 weeks
期刊介绍: The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues. Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信