考虑相脱粘的金属基复合材料结构多尺度分析

IF 1 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
G. Fernandes, Amanda S. Furtado, J. J. C. Pituba, E. A. S. Neto
{"title":"考虑相脱粘的金属基复合材料结构多尺度分析","authors":"G. Fernandes, Amanda S. Furtado, J. J. C. Pituba, E. A. S. Neto","doi":"10.1142/S1756973717400042","DOIUrl":null,"url":null,"abstract":"Multiscale analyses considering the stretching problem in plates composed of metal matrix composites (MMC) have been performed using a coupled BEM/FEM model, where the boundary element method (BEM) and the finite element method (FEM) models, respectively, the macrocontinuum and the material microstructure, denoted as representative volume element (RVE). The RVE matrix zone behavior is governed by the von Mises elasto-plastic model while elastic inclusions have been incorporated to the matrix to improve the material mechanical properties. To simulate the microcracks evolution at the interface zone surrounding the inclusions, a modified cohesive fracture model has been adopted, where the interface zone is modeled by means of cohesive contact finite elements to capture the effects of phase debonding. Thus, this paper investigates how this phase debonding affects the microstructure mechanical behavior and consequently affects the macrostructure response in a multiscale analysis. For that, initially, only RVEs...","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1756973717400042","citationCount":"2","resultStr":"{\"title\":\"Multiscale Analysis of Structures Composed of Metal Matrix Composites Considering Phase Debonding\",\"authors\":\"G. Fernandes, Amanda S. Furtado, J. J. C. Pituba, E. A. S. Neto\",\"doi\":\"10.1142/S1756973717400042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiscale analyses considering the stretching problem in plates composed of metal matrix composites (MMC) have been performed using a coupled BEM/FEM model, where the boundary element method (BEM) and the finite element method (FEM) models, respectively, the macrocontinuum and the material microstructure, denoted as representative volume element (RVE). The RVE matrix zone behavior is governed by the von Mises elasto-plastic model while elastic inclusions have been incorporated to the matrix to improve the material mechanical properties. To simulate the microcracks evolution at the interface zone surrounding the inclusions, a modified cohesive fracture model has been adopted, where the interface zone is modeled by means of cohesive contact finite elements to capture the effects of phase debonding. Thus, this paper investigates how this phase debonding affects the microstructure mechanical behavior and consequently affects the macrostructure response in a multiscale analysis. For that, initially, only RVEs...\",\"PeriodicalId\":43242,\"journal\":{\"name\":\"Journal of Multiscale Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1756973717400042\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multiscale Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1756973717400042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1756973717400042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

使用边界元/有限元耦合模型对金属基复合材料(MMC)板的拉伸问题进行了多尺度分析,其中边界元法(BEM)和有限元法(FEM)分别对宏观组织和材料微观结构进行了建模,表示为代表性体积元(RVE)。RVE基体区的行为由von Mises弹塑性模型控制,同时基体中加入了弹性夹杂物以改善材料的力学性能。为了模拟夹杂物周围界面区的微裂纹演化,采用了一种改进的内聚断裂模型,其中界面区通过内聚接触有限元建模,以捕捉相脱粘的影响。因此,本文在多尺度分析中研究了这种相脱胶如何影响微观结构的力学行为,从而影响宏观结构的响应。为此,最初,只有RVE。。。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale Analysis of Structures Composed of Metal Matrix Composites Considering Phase Debonding
Multiscale analyses considering the stretching problem in plates composed of metal matrix composites (MMC) have been performed using a coupled BEM/FEM model, where the boundary element method (BEM) and the finite element method (FEM) models, respectively, the macrocontinuum and the material microstructure, denoted as representative volume element (RVE). The RVE matrix zone behavior is governed by the von Mises elasto-plastic model while elastic inclusions have been incorporated to the matrix to improve the material mechanical properties. To simulate the microcracks evolution at the interface zone surrounding the inclusions, a modified cohesive fracture model has been adopted, where the interface zone is modeled by means of cohesive contact finite elements to capture the effects of phase debonding. Thus, this paper investigates how this phase debonding affects the microstructure mechanical behavior and consequently affects the macrostructure response in a multiscale analysis. For that, initially, only RVEs...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multiscale Modelling
Journal of Multiscale Modelling MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信