基于多数投票的云计算分布式拒绝服务攻击检测集成方法

Q3 Computer Science
A. Alqarni
{"title":"基于多数投票的云计算分布式拒绝服务攻击检测集成方法","authors":"A. Alqarni","doi":"10.13052/jcsm2245-1439.1126","DOIUrl":null,"url":null,"abstract":"Cloud computing is considered as technical advancement in information technology. Many organizations have been motivated by this advancement to outsource their data and computational needs. Such platforms are required to fulfil basic security principles such as confidentiality, availability, and integrity. Cloud computing offers scalable and virtualized services with a high flexibility level and decreased maintenance costs to end-users. The infrastructure and protocols that are behind cloud computing may contain bugs and vulnerabilities. These vulnerabilities are being exploited by attackers, leading to attacks. Among the most reported attacks in cloud computing are distributed denial-of-service (DDOS) attacks. DDOS attacks are conducted by sending many data packets to the targeted infrastructure. This leads to most network bandwidth and server time being consumed, thus causing a denial of the service problem. Several methods have been proposed and experimented with for early DDOS attack detection. Employing a single machine learning classification model may give an adequate level of attack detection accuracy but needs an enhancement. In this study, we propose an approach based on an ensemble of machine learning classifiers. The proposed approach uses a majority vote-based ensemble of classifiers to detect attacks more accurately. A subset of the CICDDOS2019 dataset consisting of 32,000 instances, including 8450 benign and 23,550 DDOS attack instances was used in this study for results and evaluation. The experimental results showed that 98.02% accuracy was achieved with 97.45% sensitivity and 98.65% specificity.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Majority Vote-Based Ensemble Approach for Distributed Denial of Service Attack Detection in Cloud Computing\",\"authors\":\"A. Alqarni\",\"doi\":\"10.13052/jcsm2245-1439.1126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing is considered as technical advancement in information technology. Many organizations have been motivated by this advancement to outsource their data and computational needs. Such platforms are required to fulfil basic security principles such as confidentiality, availability, and integrity. Cloud computing offers scalable and virtualized services with a high flexibility level and decreased maintenance costs to end-users. The infrastructure and protocols that are behind cloud computing may contain bugs and vulnerabilities. These vulnerabilities are being exploited by attackers, leading to attacks. Among the most reported attacks in cloud computing are distributed denial-of-service (DDOS) attacks. DDOS attacks are conducted by sending many data packets to the targeted infrastructure. This leads to most network bandwidth and server time being consumed, thus causing a denial of the service problem. Several methods have been proposed and experimented with for early DDOS attack detection. Employing a single machine learning classification model may give an adequate level of attack detection accuracy but needs an enhancement. In this study, we propose an approach based on an ensemble of machine learning classifiers. The proposed approach uses a majority vote-based ensemble of classifiers to detect attacks more accurately. A subset of the CICDDOS2019 dataset consisting of 32,000 instances, including 8450 benign and 23,550 DDOS attack instances was used in this study for results and evaluation. The experimental results showed that 98.02% accuracy was achieved with 97.45% sensitivity and 98.65% specificity.\",\"PeriodicalId\":37820,\"journal\":{\"name\":\"Journal of Cyber Security and Mobility\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cyber Security and Mobility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jcsm2245-1439.1126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.1126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 9

摘要

云计算被认为是信息技术的技术进步。许多组织都受到这一进步的推动,将其数据和计算需求外包。这些平台需要满足基本的安全原则,如保密性、可用性和完整性。云计算为最终用户提供了可扩展和虚拟化的服务,具有较高的灵活性,并降低了维护成本。云计算背后的基础设施和协议可能包含漏洞和漏洞。攻击者正在利用这些漏洞进行攻击。云计算中报告最多的攻击是分布式拒绝服务(DDOS)攻击。DDOS攻击是通过向目标基础设施发送许多数据包来进行的。这会导致消耗大部分网络带宽和服务器时间,从而导致拒绝服务问题。已经提出了几种用于早期DDOS攻击检测的方法并进行了实验。采用单个机器学习分类模型可以提供足够水平的攻击检测精度,但需要增强。在这项研究中,我们提出了一种基于机器学习分类器集成的方法。所提出的方法使用基于多数投票的分类器集合来更准确地检测攻击。CICDDOS2019数据集的一个子集由32000个实例组成,包括8450个良性和23550个DDOS攻击实例,用于本研究的结果和评估。实验结果表明,准确率为98.02%,灵敏度为97.45%,特异性为98.65%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Majority Vote-Based Ensemble Approach for Distributed Denial of Service Attack Detection in Cloud Computing
Cloud computing is considered as technical advancement in information technology. Many organizations have been motivated by this advancement to outsource their data and computational needs. Such platforms are required to fulfil basic security principles such as confidentiality, availability, and integrity. Cloud computing offers scalable and virtualized services with a high flexibility level and decreased maintenance costs to end-users. The infrastructure and protocols that are behind cloud computing may contain bugs and vulnerabilities. These vulnerabilities are being exploited by attackers, leading to attacks. Among the most reported attacks in cloud computing are distributed denial-of-service (DDOS) attacks. DDOS attacks are conducted by sending many data packets to the targeted infrastructure. This leads to most network bandwidth and server time being consumed, thus causing a denial of the service problem. Several methods have been proposed and experimented with for early DDOS attack detection. Employing a single machine learning classification model may give an adequate level of attack detection accuracy but needs an enhancement. In this study, we propose an approach based on an ensemble of machine learning classifiers. The proposed approach uses a majority vote-based ensemble of classifiers to detect attacks more accurately. A subset of the CICDDOS2019 dataset consisting of 32,000 instances, including 8450 benign and 23,550 DDOS attack instances was used in this study for results and evaluation. The experimental results showed that 98.02% accuracy was achieved with 97.45% sensitivity and 98.65% specificity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cyber Security and Mobility
Journal of Cyber Security and Mobility Computer Science-Computer Networks and Communications
CiteScore
2.30
自引率
0.00%
发文量
10
期刊介绍: Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信