具有已知协方差矩阵的球面分布的位置参数估计

M. Afshari, H. Karamikabir
{"title":"具有已知协方差矩阵的球面分布的位置参数估计","authors":"M. Afshari, H. Karamikabir","doi":"10.19139/soic-2310-5070-710","DOIUrl":null,"url":null,"abstract":"This paper presents shrinkage estimators of the location parameter vector for spherically symmetric distributions. We suppose that the mean vector is non-negative constraint and the components of diagonal covariance matrix is known. We compared the present estimator with natural estimator by using risk function. We show that when the covariance matrices are known, under the balance error loss function, shrinkage estimator has the smaller risk than the natural estimator. Simulation results are provided to examine the shrinkage estimators.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":"499-506"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Location Parameter Estimation of Spherically Distributions with Known Covariance Matrices\",\"authors\":\"M. Afshari, H. Karamikabir\",\"doi\":\"10.19139/soic-2310-5070-710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents shrinkage estimators of the location parameter vector for spherically symmetric distributions. We suppose that the mean vector is non-negative constraint and the components of diagonal covariance matrix is known. We compared the present estimator with natural estimator by using risk function. We show that when the covariance matrices are known, under the balance error loss function, shrinkage estimator has the smaller risk than the natural estimator. Simulation results are provided to examine the shrinkage estimators.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"8 1\",\"pages\":\"499-506\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了球对称分布的位置参数向量的收缩估计。我们假设均值向量是非负约束,并且对角协方差矩阵的分量是已知的。利用风险函数将现有估计量与自然估计量进行了比较。我们证明了当协方差矩阵已知时,在平衡误差损失函数下,收缩估计量比自然估计量具有更小的风险。提供了仿真结果来检验收缩估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Location Parameter Estimation of Spherically Distributions with Known Covariance Matrices
This paper presents shrinkage estimators of the location parameter vector for spherically symmetric distributions. We suppose that the mean vector is non-negative constraint and the components of diagonal covariance matrix is known. We compared the present estimator with natural estimator by using risk function. We show that when the covariance matrices are known, under the balance error loss function, shrinkage estimator has the smaller risk than the natural estimator. Simulation results are provided to examine the shrinkage estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信