竹片粗糙空间的循环同调

Pub Date : 2020-07-24 DOI:10.1007/s40062-020-00263-3
Luigi Caputi
{"title":"竹片粗糙空间的循环同调","authors":"Luigi Caputi","doi":"10.1007/s40062-020-00263-3","DOIUrl":null,"url":null,"abstract":"<p>The goal of the paper is to define Hochschild and cyclic homology for bornological coarse spaces, i.e., lax symmetric monoidal functors <span>\\({{\\,\\mathrm{\\mathcal {X}HH}\\,}}_{}^G\\)</span> and <span>\\({{\\,\\mathrm{\\mathcal {X}HC}\\,}}_{}^G\\)</span> from the category <span>\\(G\\mathbf {BornCoarse}\\)</span> of equivariant bornological coarse spaces to the cocomplete stable <span>\\(\\infty \\)</span>-category <span>\\(\\mathbf {Ch}_\\infty \\)</span> of chain complexes reminiscent of the classical Hochschild and cyclic homology. We investigate relations to coarse algebraic <i>K</i>-theory <span>\\(\\mathcal {X}K^G_{}\\)</span> and to coarse ordinary homology?<span>\\({{\\,\\mathrm{\\mathcal {X}H}\\,}}^G\\)</span> by constructing a trace-like natural transformation <span>\\(\\mathcal {X}K_{}^G\\rightarrow {{\\,\\mathrm{\\mathcal {X}H}\\,}}^G\\)</span> that factors through coarse Hochschild (and cyclic) homology. We further compare the forget-control map for <span>\\({{\\,\\mathrm{\\mathcal {X}HH}\\,}}_{}^G\\)</span> with the associated generalized assembly map.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-020-00263-3","citationCount":"4","resultStr":"{\"title\":\"Cyclic homology for bornological coarse spaces\",\"authors\":\"Luigi Caputi\",\"doi\":\"10.1007/s40062-020-00263-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The goal of the paper is to define Hochschild and cyclic homology for bornological coarse spaces, i.e., lax symmetric monoidal functors <span>\\\\({{\\\\,\\\\mathrm{\\\\mathcal {X}HH}\\\\,}}_{}^G\\\\)</span> and <span>\\\\({{\\\\,\\\\mathrm{\\\\mathcal {X}HC}\\\\,}}_{}^G\\\\)</span> from the category <span>\\\\(G\\\\mathbf {BornCoarse}\\\\)</span> of equivariant bornological coarse spaces to the cocomplete stable <span>\\\\(\\\\infty \\\\)</span>-category <span>\\\\(\\\\mathbf {Ch}_\\\\infty \\\\)</span> of chain complexes reminiscent of the classical Hochschild and cyclic homology. We investigate relations to coarse algebraic <i>K</i>-theory <span>\\\\(\\\\mathcal {X}K^G_{}\\\\)</span> and to coarse ordinary homology?<span>\\\\({{\\\\,\\\\mathrm{\\\\mathcal {X}H}\\\\,}}^G\\\\)</span> by constructing a trace-like natural transformation <span>\\\\(\\\\mathcal {X}K_{}^G\\\\rightarrow {{\\\\,\\\\mathrm{\\\\mathcal {X}H}\\\\,}}^G\\\\)</span> that factors through coarse Hochschild (and cyclic) homology. We further compare the forget-control map for <span>\\\\({{\\\\,\\\\mathrm{\\\\mathcal {X}HH}\\\\,}}_{}^G\\\\)</span> with the associated generalized assembly map.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-020-00263-3\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-020-00263-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-020-00263-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文的目的是定义bornological粗空间的Hochschild和循环同调,即从等变bornological粗空间的范畴\(G\mathbf {BornCoarse}\)到链配合物的协完全稳定\(\infty \) -范畴\(\mathbf {Ch}_\infty \)的松弛对称单函数\({{\,\mathrm{\mathcal {X}HH}\,}}_{}^G\)和\({{\,\mathrm{\mathcal {X}HC}\,}}_{}^G\),使人联想到经典的Hochschild和循环同调。我们研究了粗糙代数k理论\(\mathcal {X}K^G_{}\)和粗糙普通同调的关系。\({{\,\mathrm{\mathcal {X}H}\,}}^G\)通过构建一个类似于迹的自然变换\(\mathcal {X}K_{}^G\rightarrow {{\,\mathrm{\mathcal {X}H}\,}}^G\),该变换通过粗Hochschild(和循环)同调进行因子化。我们进一步将\({{\,\mathrm{\mathcal {X}HH}\,}}_{}^G\)的遗忘控制映射与相关的广义装配映射进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cyclic homology for bornological coarse spaces

分享
查看原文
Cyclic homology for bornological coarse spaces

The goal of the paper is to define Hochschild and cyclic homology for bornological coarse spaces, i.e., lax symmetric monoidal functors \({{\,\mathrm{\mathcal {X}HH}\,}}_{}^G\) and \({{\,\mathrm{\mathcal {X}HC}\,}}_{}^G\) from the category \(G\mathbf {BornCoarse}\) of equivariant bornological coarse spaces to the cocomplete stable \(\infty \)-category \(\mathbf {Ch}_\infty \) of chain complexes reminiscent of the classical Hochschild and cyclic homology. We investigate relations to coarse algebraic K-theory \(\mathcal {X}K^G_{}\) and to coarse ordinary homology?\({{\,\mathrm{\mathcal {X}H}\,}}^G\) by constructing a trace-like natural transformation \(\mathcal {X}K_{}^G\rightarrow {{\,\mathrm{\mathcal {X}H}\,}}^G\) that factors through coarse Hochschild (and cyclic) homology. We further compare the forget-control map for \({{\,\mathrm{\mathcal {X}HH}\,}}_{}^G\) with the associated generalized assembly map.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信