关于$k$-广义Lucas序列及其三角形

IF 0.8 4区 数学 Q2 MATHEMATICS
Abdullah Açikel, Amrouche Said, H. Belbachir, N. Irmak
{"title":"关于$k$-广义Lucas序列及其三角形","authors":"Abdullah Açikel, Amrouche Said, H. Belbachir, N. Irmak","doi":"10.55730/1300-0098.3416","DOIUrl":null,"url":null,"abstract":": In this paper, we investigate several identities of k -generalized Lucas numbers with k -generalized Fibonacci numbers. We also establish a link between generalized s -Lucas triangle and bi s nomial coefficients given by the coefficients of the development of a power of (1 + x + x 2 + · · · + x s ) , with s ∈ N","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On $k$-generalized Lucas sequence with its triangle\",\"authors\":\"Abdullah Açikel, Amrouche Said, H. Belbachir, N. Irmak\",\"doi\":\"10.55730/1300-0098.3416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this paper, we investigate several identities of k -generalized Lucas numbers with k -generalized Fibonacci numbers. We also establish a link between generalized s -Lucas triangle and bi s nomial coefficients given by the coefficients of the development of a power of (1 + x + x 2 + · · · + x s ) , with s ∈ N\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0098.3416\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.55730/1300-0098.3416","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了k-广义Lucas数与k-广义Fibonacci数的几个恒等式。我们还建立了广义s-Lucas三角形与(1+x+x2+··+xs)的幂的发展系数给出的双线性系数之间的联系,其中s∈N
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On $k$-generalized Lucas sequence with its triangle
: In this paper, we investigate several identities of k -generalized Lucas numbers with k -generalized Fibonacci numbers. We also establish a link between generalized s -Lucas triangle and bi s nomial coefficients given by the coefficients of the development of a power of (1 + x + x 2 + · · · + x s ) , with s ∈ N
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信