{"title":"软土边坡土工格栅加筋砂条形基脚在竖向荷载作用下的承载力","authors":"A. Hamidi, K.Abbeche","doi":"10.56748/ejse.19232","DOIUrl":null,"url":null,"abstract":"The present work deals with the study of the behavior of a rigid striped footing, resting on a sand slope reinforced by geo-grids and located above a soft clay layer. For this purpose, numerical analysis was conducted using finite element program; Plaxis software package; where the effects of some parameters on the strip footing behavior were studied. The affecting parameters such as the number of layers of geogrids, the vertical spacing, and the slope of the sand, the depth of reinforcement and the angle of friction of the sand were considered in soil reinforcement by geogrids based on multi-series of tests. The analysis results show an improvement in the soil bearing capacity at the level of the reinforcement depth, whatever the slope of the sand and its density (loose, moderately dense and dense). This improvement was related to the important number of reinforcing elements represented by a small vertical spacing of strips. Whereas, a significant dete-rioration of the soil bearing capacity was detected in the case of steep slopes of sand whatever the number of reinforcing strips and their vertical spacing.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bearing Capacity of Strip Footing Built on Geogrid-Reinforced Sand over Soft Clay Slope and Subjected to a Vertical Load\",\"authors\":\"A. Hamidi, K.Abbeche\",\"doi\":\"10.56748/ejse.19232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work deals with the study of the behavior of a rigid striped footing, resting on a sand slope reinforced by geo-grids and located above a soft clay layer. For this purpose, numerical analysis was conducted using finite element program; Plaxis software package; where the effects of some parameters on the strip footing behavior were studied. The affecting parameters such as the number of layers of geogrids, the vertical spacing, and the slope of the sand, the depth of reinforcement and the angle of friction of the sand were considered in soil reinforcement by geogrids based on multi-series of tests. The analysis results show an improvement in the soil bearing capacity at the level of the reinforcement depth, whatever the slope of the sand and its density (loose, moderately dense and dense). This improvement was related to the important number of reinforcing elements represented by a small vertical spacing of strips. Whereas, a significant dete-rioration of the soil bearing capacity was detected in the case of steep slopes of sand whatever the number of reinforcing strips and their vertical spacing.\",\"PeriodicalId\":52513,\"journal\":{\"name\":\"Electronic Journal of Structural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56748/ejse.19232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.19232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Bearing Capacity of Strip Footing Built on Geogrid-Reinforced Sand over Soft Clay Slope and Subjected to a Vertical Load
The present work deals with the study of the behavior of a rigid striped footing, resting on a sand slope reinforced by geo-grids and located above a soft clay layer. For this purpose, numerical analysis was conducted using finite element program; Plaxis software package; where the effects of some parameters on the strip footing behavior were studied. The affecting parameters such as the number of layers of geogrids, the vertical spacing, and the slope of the sand, the depth of reinforcement and the angle of friction of the sand were considered in soil reinforcement by geogrids based on multi-series of tests. The analysis results show an improvement in the soil bearing capacity at the level of the reinforcement depth, whatever the slope of the sand and its density (loose, moderately dense and dense). This improvement was related to the important number of reinforcing elements represented by a small vertical spacing of strips. Whereas, a significant dete-rioration of the soil bearing capacity was detected in the case of steep slopes of sand whatever the number of reinforcing strips and their vertical spacing.
期刊介绍:
The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.