高维无监督主动学习方法

V. Ghasemi, M. Javadian, S. Shouraki
{"title":"高维无监督主动学习方法","authors":"V. Ghasemi, M. Javadian, S. Shouraki","doi":"10.22044/JADM.2020.7826.1941","DOIUrl":null,"url":null,"abstract":"In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the data points as one-dimensional ink drop patterns, in order to summarize the effects of all data points, and then applies a threshold on the resulting vectors. It is based on an ensemble clustering method which performs one-dimensional density partitioning to produce ensemble of clustering solutions. Then, it assigns a unique prime number to the data points that exist in each partition as their labels. Consequently, a combination is performed by multiplying the labels of every data point in order to produce the absolute labels. The data points with identical absolute labels are fallen into the same cluster. The hierarchical property of the algorithm is intended to cluster complex data by zooming in each already formed cluster to find further sub-clusters. The algorithm is verified using several synthetic and real-world datasets. The results show that the proposed method has a promising performance, compared to some well-known high-dimensional data clustering algorithms.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-Dimensional Unsupervised Active Learning Method\",\"authors\":\"V. Ghasemi, M. Javadian, S. Shouraki\",\"doi\":\"10.22044/JADM.2020.7826.1941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the data points as one-dimensional ink drop patterns, in order to summarize the effects of all data points, and then applies a threshold on the resulting vectors. It is based on an ensemble clustering method which performs one-dimensional density partitioning to produce ensemble of clustering solutions. Then, it assigns a unique prime number to the data points that exist in each partition as their labels. Consequently, a combination is performed by multiplying the labels of every data point in order to produce the absolute labels. The data points with identical absolute labels are fallen into the same cluster. The hierarchical property of the algorithm is intended to cluster complex data by zooming in each already formed cluster to find further sub-clusters. The algorithm is verified using several synthetic and real-world datasets. The results show that the proposed method has a promising performance, compared to some well-known high-dimensional data clustering algorithms.\",\"PeriodicalId\":32592,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Data Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22044/JADM.2020.7826.1941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2020.7826.1941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,提出了一种用于高维数据的投影聚类算法的层次集成。该算法的基本概念基于主动学习方法(ALM),这是一种模糊学习方案,受人脑功能的一些行为特征的启发。高维无监督主动学习方法(HUALM)是一种聚类算法,它将数据点模糊为一维墨水滴模式,以总结所有数据点的效果,然后对结果向量应用阈值。它基于一种集成聚类方法,该方法执行一维密度划分以产生聚类解的集成。然后,它为每个分区中存在的数据点分配一个唯一的素数作为它们的标签。因此,通过将每个数据点的标签相乘来执行组合,以便产生绝对标签。具有相同绝对标签的数据点属于同一集群。该算法的层次性旨在通过放大每个已经形成的聚类来找到更多的子聚类来对复杂数据进行聚类。该算法使用几个合成和真实世界的数据集进行了验证。结果表明,与一些著名的高维数据聚类算法相比,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the data points as one-dimensional ink drop patterns, in order to summarize the effects of all data points, and then applies a threshold on the resulting vectors. It is based on an ensemble clustering method which performs one-dimensional density partitioning to produce ensemble of clustering solutions. Then, it assigns a unique prime number to the data points that exist in each partition as their labels. Consequently, a combination is performed by multiplying the labels of every data point in order to produce the absolute labels. The data points with identical absolute labels are fallen into the same cluster. The hierarchical property of the algorithm is intended to cluster complex data by zooming in each already formed cluster to find further sub-clusters. The algorithm is verified using several synthetic and real-world datasets. The results show that the proposed method has a promising performance, compared to some well-known high-dimensional data clustering algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信