{"title":"印尼中等土地下不同遮荫水平番茄品种的番茄红素、β-胡萝卜素和生产力","authors":"D. Setyorini, Y. Sugito, N. Aini, S. Y. Tyasmoro","doi":"10.37855/jah.2018.v20i02.17","DOIUrl":null,"url":null,"abstract":"Lycopene and beta-carotene content of two antioxidants in tomatoes and productivity are strongly influenced by the intensity of solar radiation received by plants. The objective of this study was to elucidate the effect of shading on production, lycopene content and beta-carotene content of tomato varieties at medium land of Indonesia. The study was conducted in the area with an altitude of 515 meters above sea level, in Malang, East Java, Indonesia. Treatments tested in this study were arranged in a split plot design. The main plot was percentage of shading (0, 25 and 50 %). The subplot was tomato varieties (Juliet, Golden Sweet, Golden Shine and Betavila). The results showed that shading or lowering the level of solar radiation received by plants could improve the maximum air humidity but it did not change the minimum humidity. Minimum air temperature dropped by 1°C in the shade treatments of 25 and 50 % compared with no shade, while the maximum air temperature dropped by 4 °C in the shade of 25 % and by 5 °C under 50 % shade. Changes in the microclimate around the plants, especially the temperature and air humidity did not only increase the growth and productivity of plants, but also increased the chlorophyll content of leaves and lycopene of tomatoes. All varieties showed that the highest production was obtained when plants were shaded by 25 % compared with no shade or 50 % shade. In addition, lycopene in tomato varieties was also influenced by the microclimate around the plant, and the beta-carotene content was influenced by varieties of tomatoes and shaded level but not due to interaction. Key word: Lycopene, beta-carotene, productivity, tomato, shade, medium land","PeriodicalId":39205,"journal":{"name":"Journal of Applied Horticulture","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lycopene, beta-carotene and productivity of tomato varieties at different shade levels under medium land of Indonesia\",\"authors\":\"D. Setyorini, Y. Sugito, N. Aini, S. Y. Tyasmoro\",\"doi\":\"10.37855/jah.2018.v20i02.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lycopene and beta-carotene content of two antioxidants in tomatoes and productivity are strongly influenced by the intensity of solar radiation received by plants. The objective of this study was to elucidate the effect of shading on production, lycopene content and beta-carotene content of tomato varieties at medium land of Indonesia. The study was conducted in the area with an altitude of 515 meters above sea level, in Malang, East Java, Indonesia. Treatments tested in this study were arranged in a split plot design. The main plot was percentage of shading (0, 25 and 50 %). The subplot was tomato varieties (Juliet, Golden Sweet, Golden Shine and Betavila). The results showed that shading or lowering the level of solar radiation received by plants could improve the maximum air humidity but it did not change the minimum humidity. Minimum air temperature dropped by 1°C in the shade treatments of 25 and 50 % compared with no shade, while the maximum air temperature dropped by 4 °C in the shade of 25 % and by 5 °C under 50 % shade. Changes in the microclimate around the plants, especially the temperature and air humidity did not only increase the growth and productivity of plants, but also increased the chlorophyll content of leaves and lycopene of tomatoes. All varieties showed that the highest production was obtained when plants were shaded by 25 % compared with no shade or 50 % shade. In addition, lycopene in tomato varieties was also influenced by the microclimate around the plant, and the beta-carotene content was influenced by varieties of tomatoes and shaded level but not due to interaction. Key word: Lycopene, beta-carotene, productivity, tomato, shade, medium land\",\"PeriodicalId\":39205,\"journal\":{\"name\":\"Journal of Applied Horticulture\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Horticulture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37855/jah.2018.v20i02.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37855/jah.2018.v20i02.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Lycopene, beta-carotene and productivity of tomato varieties at different shade levels under medium land of Indonesia
Lycopene and beta-carotene content of two antioxidants in tomatoes and productivity are strongly influenced by the intensity of solar radiation received by plants. The objective of this study was to elucidate the effect of shading on production, lycopene content and beta-carotene content of tomato varieties at medium land of Indonesia. The study was conducted in the area with an altitude of 515 meters above sea level, in Malang, East Java, Indonesia. Treatments tested in this study were arranged in a split plot design. The main plot was percentage of shading (0, 25 and 50 %). The subplot was tomato varieties (Juliet, Golden Sweet, Golden Shine and Betavila). The results showed that shading or lowering the level of solar radiation received by plants could improve the maximum air humidity but it did not change the minimum humidity. Minimum air temperature dropped by 1°C in the shade treatments of 25 and 50 % compared with no shade, while the maximum air temperature dropped by 4 °C in the shade of 25 % and by 5 °C under 50 % shade. Changes in the microclimate around the plants, especially the temperature and air humidity did not only increase the growth and productivity of plants, but also increased the chlorophyll content of leaves and lycopene of tomatoes. All varieties showed that the highest production was obtained when plants were shaded by 25 % compared with no shade or 50 % shade. In addition, lycopene in tomato varieties was also influenced by the microclimate around the plant, and the beta-carotene content was influenced by varieties of tomatoes and shaded level but not due to interaction. Key word: Lycopene, beta-carotene, productivity, tomato, shade, medium land
期刊介绍:
The Journal of Applied Horticulture (JAH) is an official publication of the Society for the Advancement of Horticulture, founded in 1999. JAH is a triannual publication, publishes papers of original work (or results), & rapid communications and reviews on all aspects of Horticultural Science which can contribute to fundamental and applied research on horticultural plants and their related products. The essential contents of manuscripts must not have been published in other refereed publications. Submission of a manuscript to the Journal implies no concurrent submission elsewhere.