交换微分分次代数之间映射的Hochschild上同调

Q3 Mathematics
O. Maphane, J. Gatsinzi
{"title":"交换微分分次代数之间映射的Hochschild上同调","authors":"O. Maphane, J. Gatsinzi","doi":"10.1515/taa-2022-0119","DOIUrl":null,"url":null,"abstract":"Abstract We consider a surjective morphism between commutative differential graded algebras ϕ: (∧V, d) → (B, d), where V is finite dimensional, and (B, d) is a module over ∧V via the mapping ϕ. We show that the Hochschild cohomology HH*(∧V; B) can be computed in terms of the graded vector space of positive ϕ-derivations. Moreover, if V is finite dimensional, then HH*(∧V; B) contains a polynomial algebra.","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"10 1","pages":"132 - 140"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Hochschild cohomology of a map between commutative differential graded algebras\",\"authors\":\"O. Maphane, J. Gatsinzi\",\"doi\":\"10.1515/taa-2022-0119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a surjective morphism between commutative differential graded algebras ϕ: (∧V, d) → (B, d), where V is finite dimensional, and (B, d) is a module over ∧V via the mapping ϕ. We show that the Hochschild cohomology HH*(∧V; B) can be computed in terms of the graded vector space of positive ϕ-derivations. Moreover, if V is finite dimensional, then HH*(∧V; B) contains a polynomial algebra.\",\"PeriodicalId\":30611,\"journal\":{\"name\":\"Topological Algebra and its Applications\",\"volume\":\"10 1\",\"pages\":\"132 - 140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Algebra and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/taa-2022-0119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2022-0119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们考虑交换微分分次代数之间的满射态射→ (B,d),其中V是有限维的,并且(B,d)是∧V上通过映射ξ的模。我们证明了Hochschild上同调HH*(∧V;B)可以根据正Γ-导数的分次向量空间来计算。此外,如果V是有限维的,则HH*(∧V;B)包含多项式代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Hochschild cohomology of a map between commutative differential graded algebras
Abstract We consider a surjective morphism between commutative differential graded algebras ϕ: (∧V, d) → (B, d), where V is finite dimensional, and (B, d) is a module over ∧V via the mapping ϕ. We show that the Hochschild cohomology HH*(∧V; B) can be computed in terms of the graded vector space of positive ϕ-derivations. Moreover, if V is finite dimensional, then HH*(∧V; B) contains a polynomial algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topological Algebra and its Applications
Topological Algebra and its Applications Mathematics-Algebra and Number Theory
CiteScore
1.20
自引率
0.00%
发文量
12
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信