一类最优三阶多根解算器及其动力学

IF 1 Q1 MATHEMATICS
Hwajoon Kim, A. Rathie, Y. Geum
{"title":"一类最优三阶多根解算器及其动力学","authors":"Hwajoon Kim, A. Rathie, Y. Geum","doi":"10.29020/nybg.ejpam.v16i3.4529","DOIUrl":null,"url":null,"abstract":"The complex dynamical analysis of the cubic-order iterative family is proposed to draw the fractal images via M\\\"{o}bius conjugacy map applied to a quadratic polynomial $(z-A) (z-B)$. The resulting dynamics is clearly visualized through various stability surfaces and parameter spaces using Mathematica.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Family of Optimal Cubic-Order Multiple-root Solvers and Their Dynamics\",\"authors\":\"Hwajoon Kim, A. Rathie, Y. Geum\",\"doi\":\"10.29020/nybg.ejpam.v16i3.4529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complex dynamical analysis of the cubic-order iterative family is proposed to draw the fractal images via M\\\\\\\"{o}bius conjugacy map applied to a quadratic polynomial $(z-A) (z-B)$. The resulting dynamics is clearly visualized through various stability surfaces and parameter spaces using Mathematica.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i3.4529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

提出了三阶迭代族的复动力学分析方法,通过M“{o}bius应用于二次多项式$(z-a)(z-B)$的共轭映射。使用Mathematica可以通过各种稳定性曲面和参数空间清楚地可视化所产生的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Family of Optimal Cubic-Order Multiple-root Solvers and Their Dynamics
The complex dynamical analysis of the cubic-order iterative family is proposed to draw the fractal images via M\"{o}bius conjugacy map applied to a quadratic polynomial $(z-A) (z-B)$. The resulting dynamics is clearly visualized through various stability surfaces and parameter spaces using Mathematica.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信