Poisson分布研究的对数下总体均值估计及其辅助变分

IF 0.6 Q4 STATISTICS & PROBABILITY
Prayas Sharma, S. Khare, Rajesh Singh
{"title":"Poisson分布研究的对数下总体均值估计及其辅助变分","authors":"Prayas Sharma, S. Khare, Rajesh Singh","doi":"10.1285/I20705948V13N2P580","DOIUrl":null,"url":null,"abstract":": Use of suitable auxiliary information is always suggested in literature at the planning and estimation stage to make the estimators more powerful in terms of efficiency. Estimation using auxiliary information is common in sampling literature but using distribution of study and auxiliary information at the estimation stage is uncommon and useful specially when dealing with rare variable. This study utilizes the auxiliary information and Poisson distributed variates for proposing the log-type estimator and another generalized estimator for finite population mean under simple random sampling without replacement. The Mean Square Error expressions of the proposed estimators are obtained and mathematical conditions are established to prove the efficiency of proposed estimators.  It is revealed from empirical (point estimation and interval estimation) & theoretical study that use of log type estimators along with suitable auxiliary information for Poisson distributed variates excels the performance of estimators in terms of efficiency.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"13 1","pages":"580-588"},"PeriodicalIF":0.6000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V13N2P580","citationCount":"0","resultStr":"{\"title\":\"Estimation of Population Mean under logarithmic for the Poisson Distributed Study and Auxiliary Variates\",\"authors\":\"Prayas Sharma, S. Khare, Rajesh Singh\",\"doi\":\"10.1285/I20705948V13N2P580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Use of suitable auxiliary information is always suggested in literature at the planning and estimation stage to make the estimators more powerful in terms of efficiency. Estimation using auxiliary information is common in sampling literature but using distribution of study and auxiliary information at the estimation stage is uncommon and useful specially when dealing with rare variable. This study utilizes the auxiliary information and Poisson distributed variates for proposing the log-type estimator and another generalized estimator for finite population mean under simple random sampling without replacement. The Mean Square Error expressions of the proposed estimators are obtained and mathematical conditions are established to prove the efficiency of proposed estimators.  It is revealed from empirical (point estimation and interval estimation) & theoretical study that use of log type estimators along with suitable auxiliary information for Poisson distributed variates excels the performance of estimators in terms of efficiency.\",\"PeriodicalId\":44770,\"journal\":{\"name\":\"Electronic Journal of Applied Statistical Analysis\",\"volume\":\"13 1\",\"pages\":\"580-588\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1285/I20705948V13N2P580\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Applied Statistical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1285/I20705948V13N2P580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V13N2P580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

:在规划和估算阶段,文献中总是建议使用合适的辅助信息,以使估算器在效率方面更强大。使用辅助信息进行估计在抽样文献中很常见,但在估计阶段使用研究和辅助信息的分布是不常见的,尤其是在处理罕见变量时有用。本研究利用辅助信息和泊松分布变量,在没有替换的简单随机抽样下,提出了有限总体均值的对数型估计量和另一种广义估计量。得到了估计量的均方误差表达式,并建立了数学条件来证明估计量的有效性。实证(点估计和区间估计)和理论研究表明,对数型估计量的使用以及泊松分布变量的适当辅助信息在效率方面优于估计量的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Population Mean under logarithmic for the Poisson Distributed Study and Auxiliary Variates
: Use of suitable auxiliary information is always suggested in literature at the planning and estimation stage to make the estimators more powerful in terms of efficiency. Estimation using auxiliary information is common in sampling literature but using distribution of study and auxiliary information at the estimation stage is uncommon and useful specially when dealing with rare variable. This study utilizes the auxiliary information and Poisson distributed variates for proposing the log-type estimator and another generalized estimator for finite population mean under simple random sampling without replacement. The Mean Square Error expressions of the proposed estimators are obtained and mathematical conditions are established to prove the efficiency of proposed estimators.  It is revealed from empirical (point estimation and interval estimation) & theoretical study that use of log type estimators along with suitable auxiliary information for Poisson distributed variates excels the performance of estimators in terms of efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信