{"title":"上位论与进化论","authors":"","doi":"10.1093/obo/9780199941728-0137","DOIUrl":null,"url":null,"abstract":"The concept of epistasis was introduced into evolutionary theory more than a hundred years ago. Its history is marked by controversies regarding its importance for the evolutionary process, as exemplified by the debate between Ronald Fisher and Sewall Wright in the wake of the modern synthesis. In this case the disagreement was about the shape of the adaptive landscape, which is determined by epistasis. Wright believed that epistasis causes the adaptive landscape to be rugged with many local peaks, whereas Fisher viewed evolution as a smooth, steady progression toward a unique optimum. Even today, the different meanings attributed to epistasis continue to spawn confusion. Nevertheless, a consensus is emerging, according to which the term should be used to designate interactions between genetic effects on phenotypes in the broadest sense. Stated differently, in the presence of epistasis the phenotypic effects of a gene depend on its genetic context. In evolutionary theory the phenotype of primary interest is organismal fitness, but principally the concept applies to any genotype-phenotype map. Reflecting the Fisherian view, throughout the 20th century epistasis was often considered to be a residual perturbation on the main effects of individual genes. Following the advent of sequencing techniques providing insights into the molecular basis of genotype-phenotype maps, over the past two decades it has become clear, however, that epistasis is the rule rather than an exception. This has motivated a large number of empirical studies exploring the patterns and evolutionary consequences of epistasis across a wide range of scales of organismal and genomic complexity. Correspondingly, mathematical and computational tools have been developed for the analysis of experimental data, and models have been constructed to elucidate the mechanistic and statistical origins of genetic interactions. Despite a certain inherent vagueness, the concept takes center stage in modern evolutionary thought as a framework for organizing the accumulating understanding of the relationship among genotype, phenotype, and organism.","PeriodicalId":50471,"journal":{"name":"Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Epistasis and Evolution\",\"authors\":\"\",\"doi\":\"10.1093/obo/9780199941728-0137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of epistasis was introduced into evolutionary theory more than a hundred years ago. Its history is marked by controversies regarding its importance for the evolutionary process, as exemplified by the debate between Ronald Fisher and Sewall Wright in the wake of the modern synthesis. In this case the disagreement was about the shape of the adaptive landscape, which is determined by epistasis. Wright believed that epistasis causes the adaptive landscape to be rugged with many local peaks, whereas Fisher viewed evolution as a smooth, steady progression toward a unique optimum. Even today, the different meanings attributed to epistasis continue to spawn confusion. Nevertheless, a consensus is emerging, according to which the term should be used to designate interactions between genetic effects on phenotypes in the broadest sense. Stated differently, in the presence of epistasis the phenotypic effects of a gene depend on its genetic context. In evolutionary theory the phenotype of primary interest is organismal fitness, but principally the concept applies to any genotype-phenotype map. Reflecting the Fisherian view, throughout the 20th century epistasis was often considered to be a residual perturbation on the main effects of individual genes. Following the advent of sequencing techniques providing insights into the molecular basis of genotype-phenotype maps, over the past two decades it has become clear, however, that epistasis is the rule rather than an exception. This has motivated a large number of empirical studies exploring the patterns and evolutionary consequences of epistasis across a wide range of scales of organismal and genomic complexity. Correspondingly, mathematical and computational tools have been developed for the analysis of experimental data, and models have been constructed to elucidate the mechanistic and statistical origins of genetic interactions. Despite a certain inherent vagueness, the concept takes center stage in modern evolutionary thought as a framework for organizing the accumulating understanding of the relationship among genotype, phenotype, and organism.\",\"PeriodicalId\":50471,\"journal\":{\"name\":\"Evolutionary Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/obo/9780199941728-0137\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/obo/9780199941728-0137","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
The concept of epistasis was introduced into evolutionary theory more than a hundred years ago. Its history is marked by controversies regarding its importance for the evolutionary process, as exemplified by the debate between Ronald Fisher and Sewall Wright in the wake of the modern synthesis. In this case the disagreement was about the shape of the adaptive landscape, which is determined by epistasis. Wright believed that epistasis causes the adaptive landscape to be rugged with many local peaks, whereas Fisher viewed evolution as a smooth, steady progression toward a unique optimum. Even today, the different meanings attributed to epistasis continue to spawn confusion. Nevertheless, a consensus is emerging, according to which the term should be used to designate interactions between genetic effects on phenotypes in the broadest sense. Stated differently, in the presence of epistasis the phenotypic effects of a gene depend on its genetic context. In evolutionary theory the phenotype of primary interest is organismal fitness, but principally the concept applies to any genotype-phenotype map. Reflecting the Fisherian view, throughout the 20th century epistasis was often considered to be a residual perturbation on the main effects of individual genes. Following the advent of sequencing techniques providing insights into the molecular basis of genotype-phenotype maps, over the past two decades it has become clear, however, that epistasis is the rule rather than an exception. This has motivated a large number of empirical studies exploring the patterns and evolutionary consequences of epistasis across a wide range of scales of organismal and genomic complexity. Correspondingly, mathematical and computational tools have been developed for the analysis of experimental data, and models have been constructed to elucidate the mechanistic and statistical origins of genetic interactions. Despite a certain inherent vagueness, the concept takes center stage in modern evolutionary thought as a framework for organizing the accumulating understanding of the relationship among genotype, phenotype, and organism.
期刊介绍:
The aim, scope, and format of Evolutionary Biology will be based on the following principles:
Evolutionary Biology will publish original articles and reviews that address issues and subjects of core concern in evolutionary biology. All papers must make original contributions to our understanding of the evolutionary process.
The journal will remain true to the original intent of the original series to provide a place for broad syntheses in evolutionary biology. Articles will contribute to this goal by defining the direction of current and future research and by building conceptual links between disciplines. In articles presenting an empirical analysis, the results of these analyses must be integrated within a broader evolutionary framework.
Authors are encouraged to submit papers presenting novel conceptual frameworks or major challenges to accepted ideas.
While brevity is encouraged, there is no formal restriction on length for major articles.
The journal aims to keep the time between original submission and appearance online to within four months and will encourage authors to revise rapidly once a paper has been submitted and deemed acceptable.