非对称和不完全Likert型项目的深度学习推断

IF 1.9 3区 心理学 Q2 EDUCATION & EDUCATIONAL RESEARCH
Zachary K. Collier, Minji Kong, Olushola Soyoye, Kamal Chawla, Ann M. Aviles, Y. Payne
{"title":"非对称和不完全Likert型项目的深度学习推断","authors":"Zachary K. Collier, Minji Kong, Olushola Soyoye, Kamal Chawla, Ann M. Aviles, Y. Payne","doi":"10.3102/10769986231176014","DOIUrl":null,"url":null,"abstract":"Asymmetric Likert-type items in research studies can present several challenges in data analysis, particularly concerning missing data. These items are often characterized by a skewed scaling, where either there is no neutral response option or an unequal number of possible positive and negative responses. The use of conventional techniques, such as discriminant analysis or logistic regression imputation, for handling missing data in asymmetric items may result in significant bias. It is also recommended to exercise caution when employing alternative strategies, such as listwise deletion or mean imputation, because these methods rely on assumptions that are often unrealistic in surveys and rating scales. This article explores the potential of implementing a deep learning-based imputation method. Additionally, we provide access to deep learning-based imputation to a broader group of researchers without requiring advanced machine learning training. We apply the methodology to the Wilmington Street Participatory Action Research Health Project.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Imputation for Asymmetric and Incomplete Likert-Type Items\",\"authors\":\"Zachary K. Collier, Minji Kong, Olushola Soyoye, Kamal Chawla, Ann M. Aviles, Y. Payne\",\"doi\":\"10.3102/10769986231176014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asymmetric Likert-type items in research studies can present several challenges in data analysis, particularly concerning missing data. These items are often characterized by a skewed scaling, where either there is no neutral response option or an unequal number of possible positive and negative responses. The use of conventional techniques, such as discriminant analysis or logistic regression imputation, for handling missing data in asymmetric items may result in significant bias. It is also recommended to exercise caution when employing alternative strategies, such as listwise deletion or mean imputation, because these methods rely on assumptions that are often unrealistic in surveys and rating scales. This article explores the potential of implementing a deep learning-based imputation method. Additionally, we provide access to deep learning-based imputation to a broader group of researchers without requiring advanced machine learning training. We apply the methodology to the Wilmington Street Participatory Action Research Health Project.\",\"PeriodicalId\":48001,\"journal\":{\"name\":\"Journal of Educational and Behavioral Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational and Behavioral Statistics\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3102/10769986231176014\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986231176014","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

研究中的不对称Likert类型项目可能会在数据分析中带来一些挑战,尤其是在缺失数据方面。这些项目的特点往往是比例倾斜,要么没有中立的回应选项,要么可能的积极和消极回应数量不等。使用判别分析或逻辑回归插补等传统技术来处理不对称项目中的缺失数据可能会导致显著的偏差。还建议在使用替代策略时谨慎行事,如列表删除或平均值插补,因为这些方法依赖于在调查和评级量表中往往不切实际的假设。本文探讨了实现基于深度学习的插补方法的潜力。此外,我们为更广泛的研究人员群体提供了基于深度学习的插补,而不需要高级机器学习训练。我们将该方法应用于威尔明顿街参与行动研究健康项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Imputation for Asymmetric and Incomplete Likert-Type Items
Asymmetric Likert-type items in research studies can present several challenges in data analysis, particularly concerning missing data. These items are often characterized by a skewed scaling, where either there is no neutral response option or an unequal number of possible positive and negative responses. The use of conventional techniques, such as discriminant analysis or logistic regression imputation, for handling missing data in asymmetric items may result in significant bias. It is also recommended to exercise caution when employing alternative strategies, such as listwise deletion or mean imputation, because these methods rely on assumptions that are often unrealistic in surveys and rating scales. This article explores the potential of implementing a deep learning-based imputation method. Additionally, we provide access to deep learning-based imputation to a broader group of researchers without requiring advanced machine learning training. We apply the methodology to the Wilmington Street Participatory Action Research Health Project.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
4.20%
发文量
21
期刊介绍: Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信