{"title":"具有错误指定暴露映射的因果推断:分离定义和假设","authors":"F. Sävje","doi":"10.1093/biomet/asad019","DOIUrl":null,"url":null,"abstract":"\n Exposure mappings facilitate investigations of complex causal effects when units interact in experiments. Current methods require experimenters to use the same exposure mappings both to define the effect of interest and to impose assumptions on the interference structure. However, the two roles rarely coincide in practice, and experimenters are forced to make the often questionable assumption that their exposures are correctly specified. This paper argues that the two roles exposure mappings currently serve can, and typically should, be separated, so that exposures are used to define effects without necessarily assuming that they are capturing the complete causal structure in the experiment. The paper shows that this approach is practically viable by providing conditions under which exposure effects can be precisely estimated when the exposures are misspecified. Some important questions remain open.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Causal inference with misspecified exposure mappings: separating definitions and assumptions\",\"authors\":\"F. Sävje\",\"doi\":\"10.1093/biomet/asad019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Exposure mappings facilitate investigations of complex causal effects when units interact in experiments. Current methods require experimenters to use the same exposure mappings both to define the effect of interest and to impose assumptions on the interference structure. However, the two roles rarely coincide in practice, and experimenters are forced to make the often questionable assumption that their exposures are correctly specified. This paper argues that the two roles exposure mappings currently serve can, and typically should, be separated, so that exposures are used to define effects without necessarily assuming that they are capturing the complete causal structure in the experiment. The paper shows that this approach is practically viable by providing conditions under which exposure effects can be precisely estimated when the exposures are misspecified. Some important questions remain open.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asad019\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asad019","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Causal inference with misspecified exposure mappings: separating definitions and assumptions
Exposure mappings facilitate investigations of complex causal effects when units interact in experiments. Current methods require experimenters to use the same exposure mappings both to define the effect of interest and to impose assumptions on the interference structure. However, the two roles rarely coincide in practice, and experimenters are forced to make the often questionable assumption that their exposures are correctly specified. This paper argues that the two roles exposure mappings currently serve can, and typically should, be separated, so that exposures are used to define effects without necessarily assuming that they are capturing the complete causal structure in the experiment. The paper shows that this approach is practically viable by providing conditions under which exposure effects can be precisely estimated when the exposures are misspecified. Some important questions remain open.
期刊介绍:
Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.