新型无铅钎料Sn-1Cu-1Ni-XAg冲击韧性和剪切强度的实验研究

Q4 Materials Science
S. Jayesh, Jacob Elias
{"title":"新型无铅钎料Sn-1Cu-1Ni-XAg冲击韧性和剪切强度的实验研究","authors":"S. Jayesh, Jacob Elias","doi":"10.1515/pmp-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract Lead is known to be banned in alloy making, highlighting toxicity concerns and environmental legislations. Researchers and scholars around the globe were in immediate search of new lead free solder alloys which could potentially replace the old Sn-Pb alloy. In this comprehensive study, shear strength and impact toughness tests were conducted on Sn-1Cu-1Ni when different amounts of Ag (0.25, 0.5, 0.75 1 % by wt.) is added. Shear strength test is tested using micro force test system. Impact toughness test is analyzed using Charpy impact test set up by calculating the energy difference before and after impact. The study reveals that, Ultimate shear stress increased from 19 MPa to 21.3 MPa. Yield strength increased from 27.4 MPa to 29.7 Mpa. Impact toughness of the alloys increased from 9.4 J to 10.1 J. Thus, Sn-1Cu-1Ni-1Ag is found to have improved shear strength and impact toughness than Sn-1Cu-1Ni.","PeriodicalId":52175,"journal":{"name":"Powder Metallurgy Progress","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigations on Impact Toughness and Shear Strength of Novel Lead Free Solder Alloy Sn-1Cu-1Ni-XAg\",\"authors\":\"S. Jayesh, Jacob Elias\",\"doi\":\"10.1515/pmp-2019-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Lead is known to be banned in alloy making, highlighting toxicity concerns and environmental legislations. Researchers and scholars around the globe were in immediate search of new lead free solder alloys which could potentially replace the old Sn-Pb alloy. In this comprehensive study, shear strength and impact toughness tests were conducted on Sn-1Cu-1Ni when different amounts of Ag (0.25, 0.5, 0.75 1 % by wt.) is added. Shear strength test is tested using micro force test system. Impact toughness test is analyzed using Charpy impact test set up by calculating the energy difference before and after impact. The study reveals that, Ultimate shear stress increased from 19 MPa to 21.3 MPa. Yield strength increased from 27.4 MPa to 29.7 Mpa. Impact toughness of the alloys increased from 9.4 J to 10.1 J. Thus, Sn-1Cu-1Ni-1Ag is found to have improved shear strength and impact toughness than Sn-1Cu-1Ni.\",\"PeriodicalId\":52175,\"journal\":{\"name\":\"Powder Metallurgy Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/pmp-2019-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/pmp-2019-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

摘要众所周知,铅在合金制造中是被禁止的,这突出了毒性问题和环境立法。全球各地的研究人员和学者正在立即寻找新的无铅焊料合金,这种合金有可能取代旧的Sn-Pb合金。在这项综合研究中,当添加不同量的Ag(0.25、0.5、0.75 1wt%)时,对Sn-1Cu-1Ni进行了剪切强度和冲击韧性测试。剪切强度试验采用微力试验系统进行。冲击韧性试验采用夏比冲击试验,通过计算冲击前后的能量差进行分析。研究表明,极限剪切应力从19MPa增加到21.3MPa。屈服强度从27.4MPa提高到29.7MPa。合金的冲击韧性从9.4J增加到10.1J。因此,发现Sn-1Cu-1Ni-1Ag比Sn-1Cu-1-Ni具有改进的剪切强度和冲击韧性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigations on Impact Toughness and Shear Strength of Novel Lead Free Solder Alloy Sn-1Cu-1Ni-XAg
Abstract Lead is known to be banned in alloy making, highlighting toxicity concerns and environmental legislations. Researchers and scholars around the globe were in immediate search of new lead free solder alloys which could potentially replace the old Sn-Pb alloy. In this comprehensive study, shear strength and impact toughness tests were conducted on Sn-1Cu-1Ni when different amounts of Ag (0.25, 0.5, 0.75 1 % by wt.) is added. Shear strength test is tested using micro force test system. Impact toughness test is analyzed using Charpy impact test set up by calculating the energy difference before and after impact. The study reveals that, Ultimate shear stress increased from 19 MPa to 21.3 MPa. Yield strength increased from 27.4 MPa to 29.7 Mpa. Impact toughness of the alloys increased from 9.4 J to 10.1 J. Thus, Sn-1Cu-1Ni-1Ag is found to have improved shear strength and impact toughness than Sn-1Cu-1Ni.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Metallurgy Progress
Powder Metallurgy Progress Materials Science-Metals and Alloys
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信