关于空位多项式的因子分解

IF 0.5 3区 数学 Q3 MATHEMATICS
M. Filaseta
{"title":"关于空位多项式的因子分解","authors":"M. Filaseta","doi":"10.4064/aa220723-16-5","DOIUrl":null,"url":null,"abstract":"This paper addresses the factorization of polynomials of the form $F(x) = f_{0}(x) + f_{1}(x) x^{n} + \\cdots + f_{r-1}(x) x^{(r-1)n} + f_{r}(x) x^{rn}$ where $r$ is a fixed positive integer and the $f_{j}(x)$ are fixed polynomials in $\\mathbb Z[x]$ for $0 \\le j \\le r$. We provide an efficient method for showing that for $n$ sufficiently large and reasonable conditions on the $f_{j}(x)$, the non-reciprocal part of $F(x)$ is either $1$ or irreducible. We illustrate the approach including giving two examples that arise from trace fields of hyperbolic $3$-manifolds.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the factorization of lacunary polynomials\",\"authors\":\"M. Filaseta\",\"doi\":\"10.4064/aa220723-16-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the factorization of polynomials of the form $F(x) = f_{0}(x) + f_{1}(x) x^{n} + \\\\cdots + f_{r-1}(x) x^{(r-1)n} + f_{r}(x) x^{rn}$ where $r$ is a fixed positive integer and the $f_{j}(x)$ are fixed polynomials in $\\\\mathbb Z[x]$ for $0 \\\\le j \\\\le r$. We provide an efficient method for showing that for $n$ sufficiently large and reasonable conditions on the $f_{j}(x)$, the non-reciprocal part of $F(x)$ is either $1$ or irreducible. We illustrate the approach including giving two examples that arise from trace fields of hyperbolic $3$-manifolds.\",\"PeriodicalId\":37888,\"journal\":{\"name\":\"Acta Arithmetica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Arithmetica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/aa220723-16-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa220723-16-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论形式为$F(x)=F_{0}(x)+F_{1}(x。我们提供了一个有效的方法来证明,对于$f_{j}(x)$上足够大和合理的条件,$f(x)的不可逆部分要么是$1$,要么是不可约的。我们举例说明了这种方法,包括给出两个由双曲$3$-流形的迹域引起的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the factorization of lacunary polynomials
This paper addresses the factorization of polynomials of the form $F(x) = f_{0}(x) + f_{1}(x) x^{n} + \cdots + f_{r-1}(x) x^{(r-1)n} + f_{r}(x) x^{rn}$ where $r$ is a fixed positive integer and the $f_{j}(x)$ are fixed polynomials in $\mathbb Z[x]$ for $0 \le j \le r$. We provide an efficient method for showing that for $n$ sufficiently large and reasonable conditions on the $f_{j}(x)$, the non-reciprocal part of $F(x)$ is either $1$ or irreducible. We illustrate the approach including giving two examples that arise from trace fields of hyperbolic $3$-manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Arithmetica
Acta Arithmetica 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
64
审稿时长
4-8 weeks
期刊介绍: The journal publishes papers on the Theory of Numbers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信