Guangping Liu, Yong-ping Jin, Youduo Peng, Deshun Liu, Liang Liu
{"title":"大型生物采样器在全海洋深度工作环境下的方案设计与保压性能分析","authors":"Guangping Liu, Yong-ping Jin, Youduo Peng, Deshun Liu, Liang Liu","doi":"10.1175/jtech-d-22-0062.1","DOIUrl":null,"url":null,"abstract":"\nA new full-ocean-depth macro-organisms pressure-retaining sampler (FMPS) was designed to collect pressure-retaining macro-organisms samples from the abyssal seafloor. A mathematical model for pressure compensation in the FMPS recovery process was developed. The effects of FMPS structural parameters, pressure compensator structural parameters and sampling environment on the pressure retention performance of FMPS were analyzed. Using the developed FMPS engineering prototype, FMPS internal pressure test, high-pressure chamber simulation sampling, and pressure-retaining test was carried out. The test results show that the key components of FMPS can carry 115MPa pressure, FMPS can complete the sampling action in the high-pressure chamber of 115MPa, the pressure is maintained at 105.5MPa, and the pressure drop rate (ratio of pressure drop during FMPS recovery to sampling point pressure) is 9.13%, the experimental results are consistent with the theoretical calculation. The test verified the feasibility of FMPS design and the reliability of pressure retention, providing a theoretical basis and technical support for the design and manufacture of full-ocean-depth sampling devices.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scheme Design and Pressure-Retaining Performance Analysis of Macro-biological Sampler in the Full-Ocean-Depth Operating Environment\",\"authors\":\"Guangping Liu, Yong-ping Jin, Youduo Peng, Deshun Liu, Liang Liu\",\"doi\":\"10.1175/jtech-d-22-0062.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nA new full-ocean-depth macro-organisms pressure-retaining sampler (FMPS) was designed to collect pressure-retaining macro-organisms samples from the abyssal seafloor. A mathematical model for pressure compensation in the FMPS recovery process was developed. The effects of FMPS structural parameters, pressure compensator structural parameters and sampling environment on the pressure retention performance of FMPS were analyzed. Using the developed FMPS engineering prototype, FMPS internal pressure test, high-pressure chamber simulation sampling, and pressure-retaining test was carried out. The test results show that the key components of FMPS can carry 115MPa pressure, FMPS can complete the sampling action in the high-pressure chamber of 115MPa, the pressure is maintained at 105.5MPa, and the pressure drop rate (ratio of pressure drop during FMPS recovery to sampling point pressure) is 9.13%, the experimental results are consistent with the theoretical calculation. The test verified the feasibility of FMPS design and the reliability of pressure retention, providing a theoretical basis and technical support for the design and manufacture of full-ocean-depth sampling devices.\",\"PeriodicalId\":15074,\"journal\":{\"name\":\"Journal of Atmospheric and Oceanic Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Oceanic Technology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jtech-d-22-0062.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jtech-d-22-0062.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Scheme Design and Pressure-Retaining Performance Analysis of Macro-biological Sampler in the Full-Ocean-Depth Operating Environment
A new full-ocean-depth macro-organisms pressure-retaining sampler (FMPS) was designed to collect pressure-retaining macro-organisms samples from the abyssal seafloor. A mathematical model for pressure compensation in the FMPS recovery process was developed. The effects of FMPS structural parameters, pressure compensator structural parameters and sampling environment on the pressure retention performance of FMPS were analyzed. Using the developed FMPS engineering prototype, FMPS internal pressure test, high-pressure chamber simulation sampling, and pressure-retaining test was carried out. The test results show that the key components of FMPS can carry 115MPa pressure, FMPS can complete the sampling action in the high-pressure chamber of 115MPa, the pressure is maintained at 105.5MPa, and the pressure drop rate (ratio of pressure drop during FMPS recovery to sampling point pressure) is 9.13%, the experimental results are consistent with the theoretical calculation. The test verified the feasibility of FMPS design and the reliability of pressure retention, providing a theoretical basis and technical support for the design and manufacture of full-ocean-depth sampling devices.
期刊介绍:
The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.