{"title":"具有有界叶数生成树的三次图的色数","authors":"Analen Malnegro, Gina A. Malacas, K. Ozeki","doi":"10.20429/tag.2021.080201","DOIUrl":null,"url":null,"abstract":"The color number c(G) of a cubic graph G is the minimum cardinality of a color class of a proper 4-edge-coloring of G. It is well-known that every cubic graph G satisfies c(G) = 0 if G has a Hamiltonian cycle, and c(G) ≤ 2 if G has a Hamiltonian path. In this paper, we extend these observations by obtaining a bound for the color number of cubic graphs having a spanning tree with a bounded number of leaves.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Color Number of Cubic Graphs Having a Spanning Tree with a Bounded Number of Leaves\",\"authors\":\"Analen Malnegro, Gina A. Malacas, K. Ozeki\",\"doi\":\"10.20429/tag.2021.080201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The color number c(G) of a cubic graph G is the minimum cardinality of a color class of a proper 4-edge-coloring of G. It is well-known that every cubic graph G satisfies c(G) = 0 if G has a Hamiltonian cycle, and c(G) ≤ 2 if G has a Hamiltonian path. In this paper, we extend these observations by obtaining a bound for the color number of cubic graphs having a spanning tree with a bounded number of leaves.\",\"PeriodicalId\":37096,\"journal\":{\"name\":\"Theory and Applications of Graphs\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Applications of Graphs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20429/tag.2021.080201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/tag.2021.080201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
The Color Number of Cubic Graphs Having a Spanning Tree with a Bounded Number of Leaves
The color number c(G) of a cubic graph G is the minimum cardinality of a color class of a proper 4-edge-coloring of G. It is well-known that every cubic graph G satisfies c(G) = 0 if G has a Hamiltonian cycle, and c(G) ≤ 2 if G has a Hamiltonian path. In this paper, we extend these observations by obtaining a bound for the color number of cubic graphs having a spanning tree with a bounded number of leaves.