信用评分采用基于局部均值的K次谐波近邻(MLMKHNN)

T. Widiharih, M. Mukid
{"title":"信用评分采用基于局部均值的K次谐波近邻(MLMKHNN)","authors":"T. Widiharih, M. Mukid","doi":"10.14710/MEDSTAT.11.2.107-117","DOIUrl":null,"url":null,"abstract":"Credit Scoring is designed so that lenders can easily make decisions regarding whether a loan proposal from a prospective customer is worthy of approval or not. This study examines the application of the Multi Local Means Based K Harmonic Nearest Neighbor (MLMKHNN) method in the case of motorcycle credit in a financial institution. The classification capability of this method in detecting potential borrowers into the credit category is either good or bad compared to its previous method, Local Means Based K Harmonic Nearest Neighbor (LMKNN). In this case the MLMKHNN method has not shown better performance than the LMKNN method. At the same level of total accuracy, MLMKHNN requires more numbers of neighbors than the number of neighbors required by the LMKNN method. Keywords : sampling design, all possible samples, statistical efficiency , cost efficienc y","PeriodicalId":34146,"journal":{"name":"Media Statistika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.14710/MEDSTAT.11.2.107-117","citationCount":"1","resultStr":"{\"title\":\"CREDIT SCORING MENGGUNAKAN METODE LOCAL MEANS BASED K HARMONIC NEAREST NEIGHBOR (MLMKHNN)\",\"authors\":\"T. Widiharih, M. Mukid\",\"doi\":\"10.14710/MEDSTAT.11.2.107-117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Credit Scoring is designed so that lenders can easily make decisions regarding whether a loan proposal from a prospective customer is worthy of approval or not. This study examines the application of the Multi Local Means Based K Harmonic Nearest Neighbor (MLMKHNN) method in the case of motorcycle credit in a financial institution. The classification capability of this method in detecting potential borrowers into the credit category is either good or bad compared to its previous method, Local Means Based K Harmonic Nearest Neighbor (LMKNN). In this case the MLMKHNN method has not shown better performance than the LMKNN method. At the same level of total accuracy, MLMKHNN requires more numbers of neighbors than the number of neighbors required by the LMKNN method. Keywords : sampling design, all possible samples, statistical efficiency , cost efficienc y\",\"PeriodicalId\":34146,\"journal\":{\"name\":\"Media Statistika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.14710/MEDSTAT.11.2.107-117\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Media Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/MEDSTAT.11.2.107-117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Media Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/MEDSTAT.11.2.107-117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

信用评分旨在让贷款人能够轻松决定潜在客户的贷款提议是否值得批准。本研究考察了基于多局部均值的K谐波最近邻(MLMKHNN)方法在金融机构摩托车信贷案例中的应用。与之前的方法——基于局部均值的K谐波最近邻(LMKNN)相比,该方法在将潜在借款人检测到信贷类别中的分类能力是好的还是坏的。在这种情况下,MLMKHNN方法没有显示出比LMKNN方法更好的性能。在总精度相同的水平下,MLMKHNN需要比LMKNN方法所需的邻居数量更多的邻居数量。关键词:抽样设计,所有可能的样本,统计效率,成本效益
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CREDIT SCORING MENGGUNAKAN METODE LOCAL MEANS BASED K HARMONIC NEAREST NEIGHBOR (MLMKHNN)
Credit Scoring is designed so that lenders can easily make decisions regarding whether a loan proposal from a prospective customer is worthy of approval or not. This study examines the application of the Multi Local Means Based K Harmonic Nearest Neighbor (MLMKHNN) method in the case of motorcycle credit in a financial institution. The classification capability of this method in detecting potential borrowers into the credit category is either good or bad compared to its previous method, Local Means Based K Harmonic Nearest Neighbor (LMKNN). In this case the MLMKHNN method has not shown better performance than the LMKNN method. At the same level of total accuracy, MLMKHNN requires more numbers of neighbors than the number of neighbors required by the LMKNN method. Keywords : sampling design, all possible samples, statistical efficiency , cost efficienc y
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信