印尼区域经济增长预测

Q2 Economics, Econometrics and Finance
Jesica Nauli Br. Siringo Ringo, A. Monika
{"title":"印尼区域经济增长预测","authors":"Jesica Nauli Br. Siringo Ringo, A. Monika","doi":"10.21098/bmeb.v25i3.1815","DOIUrl":null,"url":null,"abstract":"This study aims to nowcast gross regional domestic product at the provincial level for Indonesia. The dynamic factor model and mixed data sampling were applied to three sets of variables; namely, macroeconomic, financial, and Google Trends. We find that both methods captured several economic expansions and contractions, including the recent downturn during the COVID-19 pandemic. By including the pandemic period, accuracy across the same set of variables and provinces was slightly reduced.","PeriodicalId":36737,"journal":{"name":"Buletin Ekonomi Moneter dan Perbankan","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"NOWCASTING REGIONAL ECONOMIC GROWTH IN INDONESIA\",\"authors\":\"Jesica Nauli Br. Siringo Ringo, A. Monika\",\"doi\":\"10.21098/bmeb.v25i3.1815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to nowcast gross regional domestic product at the provincial level for Indonesia. The dynamic factor model and mixed data sampling were applied to three sets of variables; namely, macroeconomic, financial, and Google Trends. We find that both methods captured several economic expansions and contractions, including the recent downturn during the COVID-19 pandemic. By including the pandemic period, accuracy across the same set of variables and provinces was slightly reduced.\",\"PeriodicalId\":36737,\"journal\":{\"name\":\"Buletin Ekonomi Moneter dan Perbankan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buletin Ekonomi Moneter dan Perbankan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21098/bmeb.v25i3.1815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buletin Ekonomi Moneter dan Perbankan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21098/bmeb.v25i3.1815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 1

摘要

本研究旨在预测印度尼西亚省级地区国内生产总值。将动态因素模型和混合数据抽样应用于三组变量;即宏观经济、金融和谷歌趋势。我们发现,这两种方法都捕捉到了几次经济扩张和收缩,包括最近新冠肺炎大流行期间的低迷。通过将疫情期间包括在内,同一组变量和省份的准确性略有下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NOWCASTING REGIONAL ECONOMIC GROWTH IN INDONESIA
This study aims to nowcast gross regional domestic product at the provincial level for Indonesia. The dynamic factor model and mixed data sampling were applied to three sets of variables; namely, macroeconomic, financial, and Google Trends. We find that both methods captured several economic expansions and contractions, including the recent downturn during the COVID-19 pandemic. By including the pandemic period, accuracy across the same set of variables and provinces was slightly reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Buletin Ekonomi Moneter dan Perbankan
Buletin Ekonomi Moneter dan Perbankan Economics, Econometrics and Finance-Finance
CiteScore
2.20
自引率
0.00%
发文量
1
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信