在分类方法中使用细节的早晨

Н. Е. Кондрук
{"title":"在分类方法中使用细节的早晨","authors":"Н. Е. Кондрук","doi":"10.24144/2616-7700.2021.38(1).143-148","DOIUrl":null,"url":null,"abstract":"Дане дослідження є розвитком напрямку застосування різних видів мір подібності в задачах інтелектуального аналізу даних. Майнінг даних - це процес видобутку неявної інформації з бази даних, якa характеризує приховані зв’язки та структури. Прогнозується, що цей вид аналізу стане надзвичайно затребуваним протягом наступного десятиліття. В роботі наведено огляд сучасних напрямків контрольованої класифікації. Найпопулярнішим прийомом класифікації об’єктів із числовими атрибутами вважається метод K-найближчих сусідів (KNN). Встановлено, що прогнозне значення мітки класу можна покращити, якщо використовувати зважений вплив кожного сусіда на результат.  Таким чином, доцільно модифікувати метод KNN. При цьому, запропоновано ввести  функцію, що характеризує схожість неміченого об’єкта із його найближчими сусідами у вигляді міри подібності. На її основі введено індикатори зваженого підрахунку голосів «сусідів» за певну мітку класу. Розроблено програмне забезпечення, що реалізує описаний підхід. Проведення практичних експериментів показало його ефективність при розв’язанні певних класів прикладних задач.","PeriodicalId":33567,"journal":{"name":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","volume":"38 1","pages":"143-148"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Використання мiр подiбностi в методах класифiкацiї\",\"authors\":\"Н. Е. Кондрук\",\"doi\":\"10.24144/2616-7700.2021.38(1).143-148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Дане дослідження є розвитком напрямку застосування різних видів мір подібності в задачах інтелектуального аналізу даних. Майнінг даних - це процес видобутку неявної інформації з бази даних, якa характеризує приховані зв’язки та структури. Прогнозується, що цей вид аналізу стане надзвичайно затребуваним протягом наступного десятиліття. В роботі наведено огляд сучасних напрямків контрольованої класифікації. Найпопулярнішим прийомом класифікації об’єктів із числовими атрибутами вважається метод K-найближчих сусідів (KNN). Встановлено, що прогнозне значення мітки класу можна покращити, якщо використовувати зважений вплив кожного сусіда на результат.  Таким чином, доцільно модифікувати метод KNN. При цьому, запропоновано ввести  функцію, що характеризує схожість неміченого об’єкта із його найближчими сусідами у вигляді міри подібності. На її основі введено індикатори зваженого підрахунку голосів «сусідів» за певну мітку класу. Розроблено програмне забезпечення, що реалізує описаний підхід. Проведення практичних експериментів показало його ефективність при розв’язанні певних класів прикладних задач.\",\"PeriodicalId\":33567,\"journal\":{\"name\":\"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika\",\"volume\":\"38 1\",\"pages\":\"143-148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24144/2616-7700.2021.38(1).143-148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovii visnik Uzhgorods''kogo universitetu Seriia Matematika i informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24144/2616-7700.2021.38(1).143-148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究正朝着将不同类型的相似性应用于智能数据分析任务的方向发展。数据挖掘是一个从数据库中提取不可见信息的过程,该信息具有隐藏链接和结构的特征。这种分析预计在未来十年将极其昂贵。这项工作概述了受控分类的当前方向。对具有数字属性的对象进行分类最受欢迎的方法是K-Neighbour方法(KNN)。已经确定,使用每个邻居对结果的加权效应可以提高类标签的预测值。这将彻底修改KNN方法。在这种情况下,建议输入一个函数,该函数将未知对象与其最近邻居的相似性表征为相似性。在此基础上,为类别标签输入“邻居”投票的加权指标。开发了实现所述方法的软件。实际实验表明,它在解决某些类别的示范任务方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Використання мiр подiбностi в методах класифiкацiї
Дане дослідження є розвитком напрямку застосування різних видів мір подібності в задачах інтелектуального аналізу даних. Майнінг даних - це процес видобутку неявної інформації з бази даних, якa характеризує приховані зв’язки та структури. Прогнозується, що цей вид аналізу стане надзвичайно затребуваним протягом наступного десятиліття. В роботі наведено огляд сучасних напрямків контрольованої класифікації. Найпопулярнішим прийомом класифікації об’єктів із числовими атрибутами вважається метод K-найближчих сусідів (KNN). Встановлено, що прогнозне значення мітки класу можна покращити, якщо використовувати зважений вплив кожного сусіда на результат.  Таким чином, доцільно модифікувати метод KNN. При цьому, запропоновано ввести  функцію, що характеризує схожість неміченого об’єкта із його найближчими сусідами у вигляді міри подібності. На її основі введено індикатори зваженого підрахунку голосів «сусідів» за певну мітку класу. Розроблено програмне забезпечення, що реалізує описаний підхід. Проведення практичних експериментів показало його ефективність при розв’язанні певних класів прикладних задач.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信