Ginny S. Tito, Alex T. Kuvarega, Bhekie B. Mamba, Usisipho Feleni
{"title":"香蕉皮提取物功能化硒化镍量子点电化学检测奈韦拉平","authors":"Ginny S. Tito, Alex T. Kuvarega, Bhekie B. Mamba, Usisipho Feleni","doi":"10.1007/s12678-022-00805-8","DOIUrl":null,"url":null,"abstract":"<div><p>Nickel selenide quantum dots (NiSe<sub>2</sub>QDs) were synthesised using the aqueous colloidal method with banana peel extract (BPE) utilised as a capping agent. A gold electrode modified with the BPE-capped NiSe<sub>2</sub>QDs was used for the determination of nevirapine. Characterisation of the BPE-NiSe<sub>2</sub>QDs was conducted using high-resolution scanning electron microscopy (HRSEM), high-resolution transmission microscopy (HRTEM) and small-angle X-ray scattering (SAXS) which all revealed the spherical morphology of the QDs and their small sizes (˂ 10 nm). Optical properties of the BPE-NiSe<sub>2</sub>QDs studied by ultraviolet–visible spectroscopy (UV–Vis) revealed an absorbance band at 329 nm corresponding to an energy bandgap value of 2.99 eV. The electrochemical experiments were performed using differential pulse voltammetry. The Au/BPE-NiSe<sub>2</sub>QDs/Nafion-based electrochemical sensor showed a distinctive anodic response towards nevirapine at 0.76 V. The results obtained showed that the oxidation peak current increased linearly as the nevirapine concentrations increased in the range 0–1.21 pM (0–0.322 ng/L) with a low limit of detection (LOD) of 0.024 pM (0.0064 ng/L) and sensitivity of 5.52 µA/pM. These exceptional properties are comparable to or even better than already reported sensors for complex matrices. The electrochemical sensor demonstrated high repeatability and stability. The proposed sensor was successfully used for nevirapine detection in spiked wastewater samples with satisfactory results.\n</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 3","pages":"393 - 405"},"PeriodicalIF":2.7000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electrochemical Detection of Nevirapine Using Banana Peel Extract Functionalised Nickel Selenide Quantum Dots\",\"authors\":\"Ginny S. Tito, Alex T. Kuvarega, Bhekie B. Mamba, Usisipho Feleni\",\"doi\":\"10.1007/s12678-022-00805-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nickel selenide quantum dots (NiSe<sub>2</sub>QDs) were synthesised using the aqueous colloidal method with banana peel extract (BPE) utilised as a capping agent. A gold electrode modified with the BPE-capped NiSe<sub>2</sub>QDs was used for the determination of nevirapine. Characterisation of the BPE-NiSe<sub>2</sub>QDs was conducted using high-resolution scanning electron microscopy (HRSEM), high-resolution transmission microscopy (HRTEM) and small-angle X-ray scattering (SAXS) which all revealed the spherical morphology of the QDs and their small sizes (˂ 10 nm). Optical properties of the BPE-NiSe<sub>2</sub>QDs studied by ultraviolet–visible spectroscopy (UV–Vis) revealed an absorbance band at 329 nm corresponding to an energy bandgap value of 2.99 eV. The electrochemical experiments were performed using differential pulse voltammetry. The Au/BPE-NiSe<sub>2</sub>QDs/Nafion-based electrochemical sensor showed a distinctive anodic response towards nevirapine at 0.76 V. The results obtained showed that the oxidation peak current increased linearly as the nevirapine concentrations increased in the range 0–1.21 pM (0–0.322 ng/L) with a low limit of detection (LOD) of 0.024 pM (0.0064 ng/L) and sensitivity of 5.52 µA/pM. These exceptional properties are comparable to or even better than already reported sensors for complex matrices. The electrochemical sensor demonstrated high repeatability and stability. The proposed sensor was successfully used for nevirapine detection in spiked wastewater samples with satisfactory results.\\n</p></div>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"14 3\",\"pages\":\"393 - 405\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-022-00805-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-022-00805-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electrochemical Detection of Nevirapine Using Banana Peel Extract Functionalised Nickel Selenide Quantum Dots
Nickel selenide quantum dots (NiSe2QDs) were synthesised using the aqueous colloidal method with banana peel extract (BPE) utilised as a capping agent. A gold electrode modified with the BPE-capped NiSe2QDs was used for the determination of nevirapine. Characterisation of the BPE-NiSe2QDs was conducted using high-resolution scanning electron microscopy (HRSEM), high-resolution transmission microscopy (HRTEM) and small-angle X-ray scattering (SAXS) which all revealed the spherical morphology of the QDs and their small sizes (˂ 10 nm). Optical properties of the BPE-NiSe2QDs studied by ultraviolet–visible spectroscopy (UV–Vis) revealed an absorbance band at 329 nm corresponding to an energy bandgap value of 2.99 eV. The electrochemical experiments were performed using differential pulse voltammetry. The Au/BPE-NiSe2QDs/Nafion-based electrochemical sensor showed a distinctive anodic response towards nevirapine at 0.76 V. The results obtained showed that the oxidation peak current increased linearly as the nevirapine concentrations increased in the range 0–1.21 pM (0–0.322 ng/L) with a low limit of detection (LOD) of 0.024 pM (0.0064 ng/L) and sensitivity of 5.52 µA/pM. These exceptional properties are comparable to or even better than already reported sensors for complex matrices. The electrochemical sensor demonstrated high repeatability and stability. The proposed sensor was successfully used for nevirapine detection in spiked wastewater samples with satisfactory results.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.