modelSampler:线性回归中变量选择和模型探索的R工具

T. Dey
{"title":"modelSampler:线性回归中变量选择和模型探索的R工具","authors":"T. Dey","doi":"10.6339/JDS.2013.11(2).1133","DOIUrl":null,"url":null,"abstract":"We have developed a tool for model space exploration and variable selection in linear regression models based on a simple spike and slab model (Dey, 2012). The model chosen is the best model with minimum nal prediction error (FPE) values among all other models. This is implemented via the R package modelSampler. However, model selection based on FPE criteria is dubious and questionable as FPE criteria can be sensitive to perturbations in the data. This R package can be used for empirical assessment of the stability of FPE criteria. A stable model selection is accomplished by using a bootstrap wrapper that calls the primary function of the package several times on the bootstrapped data. The heart of the method is the notion of model averaging for stable variable selection and to study the behavior of variables over the entire model space, a concept invaluable in high dimensional situations.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"modelSampler: An R Tool for Variable Selection and Model Exploration in Linear Regression\",\"authors\":\"T. Dey\",\"doi\":\"10.6339/JDS.2013.11(2).1133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a tool for model space exploration and variable selection in linear regression models based on a simple spike and slab model (Dey, 2012). The model chosen is the best model with minimum nal prediction error (FPE) values among all other models. This is implemented via the R package modelSampler. However, model selection based on FPE criteria is dubious and questionable as FPE criteria can be sensitive to perturbations in the data. This R package can be used for empirical assessment of the stability of FPE criteria. A stable model selection is accomplished by using a bootstrap wrapper that calls the primary function of the package several times on the bootstrapped data. The heart of the method is the notion of model averaging for stable variable selection and to study the behavior of variables over the entire model space, a concept invaluable in high dimensional situations.\",\"PeriodicalId\":73699,\"journal\":{\"name\":\"Journal of data science : JDS\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of data science : JDS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6339/JDS.2013.11(2).1133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/JDS.2013.11(2).1133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们开发了一种基于简单尖峰和平板模型的线性回归模型中的模型空间探索和变量选择工具(Dey,2012)。所选择的模型是所有其他模型中具有最小最终预测误差(FPE)值的最佳模型。这是通过R包modelSampler实现的。然而,基于FPE标准的模型选择是可疑和可疑的,因为FPE标准可能对数据中的扰动敏感。该R包可用于FPE标准稳定性的经验评估。稳定的模型选择是通过使用引导包装器来完成的,该包装器在引导的数据上多次调用包的主函数。该方法的核心是模型平均的概念,用于稳定的变量选择,并研究变量在整个模型空间中的行为,这一概念在高维情况下非常宝贵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
modelSampler: An R Tool for Variable Selection and Model Exploration in Linear Regression
We have developed a tool for model space exploration and variable selection in linear regression models based on a simple spike and slab model (Dey, 2012). The model chosen is the best model with minimum nal prediction error (FPE) values among all other models. This is implemented via the R package modelSampler. However, model selection based on FPE criteria is dubious and questionable as FPE criteria can be sensitive to perturbations in the data. This R package can be used for empirical assessment of the stability of FPE criteria. A stable model selection is accomplished by using a bootstrap wrapper that calls the primary function of the package several times on the bootstrapped data. The heart of the method is the notion of model averaging for stable variable selection and to study the behavior of variables over the entire model space, a concept invaluable in high dimensional situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信