{"title":"超边缘查询的算法和数据结构","authors":"Jules Bertrand, F. Dufossé, Somesh Singh, B. Uçar","doi":"10.1145/3568421","DOIUrl":null,"url":null,"abstract":"We consider the problem of querying the existence of hyperedges in hypergraphs. More formally, given a hypergraph, we need to answer queries of the form: “Does the following set of vertices form a hyperedge in the given hypergraph?” Our aim is to set up data structures based on hashing to answer these queries as fast as possible. We propose an adaptation of a well-known perfect hashing approach for the problem at hand. We analyze the space and runtime complexity of the proposed approach and experimentally compare it with the state-of-the-art hashing-based solutions. Experiments demonstrate the efficiency of the proposed approach with respect to the state-of-the-art.","PeriodicalId":53707,"journal":{"name":"Journal of Experimental Algorithmics","volume":" ","pages":"1 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algorithms and Data Structures for Hyperedge Queries\",\"authors\":\"Jules Bertrand, F. Dufossé, Somesh Singh, B. Uçar\",\"doi\":\"10.1145/3568421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of querying the existence of hyperedges in hypergraphs. More formally, given a hypergraph, we need to answer queries of the form: “Does the following set of vertices form a hyperedge in the given hypergraph?” Our aim is to set up data structures based on hashing to answer these queries as fast as possible. We propose an adaptation of a well-known perfect hashing approach for the problem at hand. We analyze the space and runtime complexity of the proposed approach and experimentally compare it with the state-of-the-art hashing-based solutions. Experiments demonstrate the efficiency of the proposed approach with respect to the state-of-the-art.\",\"PeriodicalId\":53707,\"journal\":{\"name\":\"Journal of Experimental Algorithmics\",\"volume\":\" \",\"pages\":\"1 - 23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Algorithmics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3568421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Algorithmics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Algorithms and Data Structures for Hyperedge Queries
We consider the problem of querying the existence of hyperedges in hypergraphs. More formally, given a hypergraph, we need to answer queries of the form: “Does the following set of vertices form a hyperedge in the given hypergraph?” Our aim is to set up data structures based on hashing to answer these queries as fast as possible. We propose an adaptation of a well-known perfect hashing approach for the problem at hand. We analyze the space and runtime complexity of the proposed approach and experimentally compare it with the state-of-the-art hashing-based solutions. Experiments demonstrate the efficiency of the proposed approach with respect to the state-of-the-art.
期刊介绍:
The ACM JEA is a high-quality, refereed, archival journal devoted to the study of discrete algorithms and data structures through a combination of experimentation and classical analysis and design techniques. It focuses on the following areas in algorithms and data structures: ■combinatorial optimization ■computational biology ■computational geometry ■graph manipulation ■graphics ■heuristics ■network design ■parallel processing ■routing and scheduling ■searching and sorting ■VLSI design