棉花孤立子的几乎Kenmotsu 3-h度量

Q2 Mathematics
D. Dey, P. Majhi
{"title":"棉花孤立子的几乎Kenmotsu 3-h度量","authors":"D. Dey, P. Majhi","doi":"10.1108/ajms-10-2020-0103","DOIUrl":null,"url":null,"abstract":"PurposeCotton soliton is a newly introduced notion in the field of Riemannian manifolds. The object of this article is to study the properties of this soliton on certain contact metric manifolds.Design/methodology/approachThe authors consider the notion of Cotton soliton on almost Kenmotsu 3-manifolds. The authors use a local basis of the manifold that helps to study this notion in terms of partial differential equations.FindingsFirst the authors consider that the potential vector field is pointwise collinear with the Reeb vector field and prove a non-existence of such Cotton soliton. Next the authors assume that the potential vector field is orthogonal to the Reeb vector field. It is proved that such a Cotton soliton on a non-Kenmotsu almost Kenmotsu 3-h-manifold such that the Reeb vector field is an eigen vector of the Ricci operator is steady and the manifold is locally isometric to.Originality/valueThe results of this paper are new and interesting. Also, the Proposition 3.2 will be helpful in further study of this space.","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost Kenmotsu 3-h-metric as a cotton soliton\",\"authors\":\"D. Dey, P. Majhi\",\"doi\":\"10.1108/ajms-10-2020-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeCotton soliton is a newly introduced notion in the field of Riemannian manifolds. The object of this article is to study the properties of this soliton on certain contact metric manifolds.Design/methodology/approachThe authors consider the notion of Cotton soliton on almost Kenmotsu 3-manifolds. The authors use a local basis of the manifold that helps to study this notion in terms of partial differential equations.FindingsFirst the authors consider that the potential vector field is pointwise collinear with the Reeb vector field and prove a non-existence of such Cotton soliton. Next the authors assume that the potential vector field is orthogonal to the Reeb vector field. It is proved that such a Cotton soliton on a non-Kenmotsu almost Kenmotsu 3-h-manifold such that the Reeb vector field is an eigen vector of the Ricci operator is steady and the manifold is locally isometric to.Originality/valueThe results of this paper are new and interesting. Also, the Proposition 3.2 will be helpful in further study of this space.\",\"PeriodicalId\":36840,\"journal\":{\"name\":\"Arab Journal of Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arab Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ajms-10-2020-0103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ajms-10-2020-0103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

目的Cotton孤子是黎曼流形领域中一个新引入的概念。本文的目的是研究这种孤立子在某些接触度量流形上的性质。设计/方法论/方法作者考虑了几乎Kenmotsu 3-流形上的Cotton孤立子的概念。作者使用了流形的局部基,这有助于从偏微分方程的角度研究这一概念。首先,作者认为势矢量场与Reeb矢量场是点共线的,并证明了这种Cotton孤立子的不存在。接下来,作者假设势向量场与Reeb向量场正交。证明了在非Kenmotsu几乎Kenmotsu 3-h流形上这样一个Cotton孤立子,使得Reeb向量场是Ricci算子的一个本征向量是稳定的,并且该流形局部等距于。此外,3.2号提案将有助于进一步研究这一领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost Kenmotsu 3-h-metric as a cotton soliton
PurposeCotton soliton is a newly introduced notion in the field of Riemannian manifolds. The object of this article is to study the properties of this soliton on certain contact metric manifolds.Design/methodology/approachThe authors consider the notion of Cotton soliton on almost Kenmotsu 3-manifolds. The authors use a local basis of the manifold that helps to study this notion in terms of partial differential equations.FindingsFirst the authors consider that the potential vector field is pointwise collinear with the Reeb vector field and prove a non-existence of such Cotton soliton. Next the authors assume that the potential vector field is orthogonal to the Reeb vector field. It is proved that such a Cotton soliton on a non-Kenmotsu almost Kenmotsu 3-h-manifold such that the Reeb vector field is an eigen vector of the Ricci operator is steady and the manifold is locally isometric to.Originality/valueThe results of this paper are new and interesting. Also, the Proposition 3.2 will be helpful in further study of this space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信