与平衡和周期轨迹的稳定性损失有关的动力学现象

IF 1.4 4区 数学 Q1 MATHEMATICS
A. Neishtadt, D. Treschev
{"title":"与平衡和周期轨迹的稳定性损失有关的动力学现象","authors":"A. Neishtadt, D. Treschev","doi":"10.1070/RM10023","DOIUrl":null,"url":null,"abstract":"This is a study of a dynamical system depending on a parameter . Under the assumption that the system has a family of equilibrium positions or periodic trajectories smoothly depending on , the focus is on details of stability loss through various bifurcations (Poincaré–Andronov– Hopf, period-doubling, and so on). Two basic formulations of the problem are considered. In the first, is constant and the subject of the analysis is the phenomenon of a soft or hard loss of stability. In the second, varies slowly with time (the case of a dynamic bifurcation). In the simplest situation , where is a small parameter. More generally, may be a solution of a slow differential equation. In the case of a dynamic bifurcation the analysis is mainly focused around the phenomenon of stability loss delay. Bibliography: 88 titles.","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"76 1","pages":"883 - 926"},"PeriodicalIF":1.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamical phenomena connected with stability loss of equilibria and periodic trajectories\",\"authors\":\"A. Neishtadt, D. Treschev\",\"doi\":\"10.1070/RM10023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a study of a dynamical system depending on a parameter . Under the assumption that the system has a family of equilibrium positions or periodic trajectories smoothly depending on , the focus is on details of stability loss through various bifurcations (Poincaré–Andronov– Hopf, period-doubling, and so on). Two basic formulations of the problem are considered. In the first, is constant and the subject of the analysis is the phenomenon of a soft or hard loss of stability. In the second, varies slowly with time (the case of a dynamic bifurcation). In the simplest situation , where is a small parameter. More generally, may be a solution of a slow differential equation. In the case of a dynamic bifurcation the analysis is mainly focused around the phenomenon of stability loss delay. Bibliography: 88 titles.\",\"PeriodicalId\":49582,\"journal\":{\"name\":\"Russian Mathematical Surveys\",\"volume\":\"76 1\",\"pages\":\"883 - 926\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematical Surveys\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM10023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM10023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

这是对一个依赖于参数的动力系统的研究。在假设系统具有一系列平稳依赖的平衡位置或周期轨迹的情况下,重点是通过各种分叉(Poincaré–Andronov–Hopf、周期加倍等)造成的稳定性损失的细节。考虑了这个问题的两个基本公式。在第一种情况下,是常数,分析的对象是软或硬稳定性丧失的现象。在第二种情况下,随时间缓慢变化(动态分叉的情况)。在最简单的情况下,其中是一个小参数。更一般地,可以是慢微分方程的解。在动态分叉的情况下,分析主要集中在稳定性损失延迟现象上。参考书目:88种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical phenomena connected with stability loss of equilibria and periodic trajectories
This is a study of a dynamical system depending on a parameter . Under the assumption that the system has a family of equilibrium positions or periodic trajectories smoothly depending on , the focus is on details of stability loss through various bifurcations (Poincaré–Andronov– Hopf, period-doubling, and so on). Two basic formulations of the problem are considered. In the first, is constant and the subject of the analysis is the phenomenon of a soft or hard loss of stability. In the second, varies slowly with time (the case of a dynamic bifurcation). In the simplest situation , where is a small parameter. More generally, may be a solution of a slow differential equation. In the case of a dynamic bifurcation the analysis is mainly focused around the phenomenon of stability loss delay. Bibliography: 88 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信