基于混合GAACO算法的云QoS负载均衡调度

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Arivumathi Ilankumaran, S. Narayanan
{"title":"基于混合GAACO算法的云QoS负载均衡调度","authors":"Arivumathi Ilankumaran, S. Narayanan","doi":"10.2478/cait-2023-0009","DOIUrl":null,"url":null,"abstract":"Abstract In recent days, resource allocation is considered to be a complex task in cloud systems. The heuristics models will allocate the resources efficiently in different machines. Then, the fitness function estimation plays a vital role in cloud load balancing, which is mainly used to minimize power consumption. The optimization technique is one of the most suitable options for solving load-balancing problems. This work mainly focuses on analyzing the impacts of using the Genetic Algorithm and Ant Colony Optimization (GAACO) technique for obtaining the optimal solution to efficiently balance the loads across the cloud systems. In addition to that, the GA and ACO are the kinds of object heuristic algorithms being proposed in the work to increase the number of servers that are operated with better energy efficiency. In this work, the main contribution of the GAACO algorithm is to reduce energy consumption, makespan time, response time, and degree of imbalance.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Energy-Aware QoS Load Balance Scheduling Using Hybrid GAACO Algorithm for Cloud\",\"authors\":\"Arivumathi Ilankumaran, S. Narayanan\",\"doi\":\"10.2478/cait-2023-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In recent days, resource allocation is considered to be a complex task in cloud systems. The heuristics models will allocate the resources efficiently in different machines. Then, the fitness function estimation plays a vital role in cloud load balancing, which is mainly used to minimize power consumption. The optimization technique is one of the most suitable options for solving load-balancing problems. This work mainly focuses on analyzing the impacts of using the Genetic Algorithm and Ant Colony Optimization (GAACO) technique for obtaining the optimal solution to efficiently balance the loads across the cloud systems. In addition to that, the GA and ACO are the kinds of object heuristic algorithms being proposed in the work to increase the number of servers that are operated with better energy efficiency. In this work, the main contribution of the GAACO algorithm is to reduce energy consumption, makespan time, response time, and degree of imbalance.\",\"PeriodicalId\":45562,\"journal\":{\"name\":\"Cybernetics and Information Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cait-2023-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2023-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

摘要近年来,资源分配被认为是云系统中的一项复杂任务。启发式模型将在不同的机器中有效地分配资源。然后,适应度函数估计在云负载平衡中起着至关重要的作用,它主要用于最小化功耗。优化技术是解决负载平衡问题的最合适的选择之一。这项工作主要集中在分析使用遗传算法和蚁群优化(GAACO)技术来获得最优解以有效平衡云系统负载的影响。除此之外,GA和ACO是工作中提出的对象启发式算法,旨在增加以更好的能效运行的服务器数量。在这项工作中,GAACO算法的主要贡献是减少能耗、完成时间、响应时间和不平衡程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Energy-Aware QoS Load Balance Scheduling Using Hybrid GAACO Algorithm for Cloud
Abstract In recent days, resource allocation is considered to be a complex task in cloud systems. The heuristics models will allocate the resources efficiently in different machines. Then, the fitness function estimation plays a vital role in cloud load balancing, which is mainly used to minimize power consumption. The optimization technique is one of the most suitable options for solving load-balancing problems. This work mainly focuses on analyzing the impacts of using the Genetic Algorithm and Ant Colony Optimization (GAACO) technique for obtaining the optimal solution to efficiently balance the loads across the cloud systems. In addition to that, the GA and ACO are the kinds of object heuristic algorithms being proposed in the work to increase the number of servers that are operated with better energy efficiency. In this work, the main contribution of the GAACO algorithm is to reduce energy consumption, makespan time, response time, and degree of imbalance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信