{"title":"一类退化系数流与输运问题解的存在唯一性","authors":"N. Ray, R. Schulz","doi":"10.1017/s0956792522000018","DOIUrl":null,"url":null,"abstract":"Structural changes of the pore space and clogging phenomena are inherent to many porous media applications. However, related analytical investigations remain challenging due to potentially vanishing coefficients in the respective systems of partial differential equations. In this research, we apply an appropriate scaling of the unknowns and work with porosity-weighted function spaces. This enables us to prove existence, uniqueness and non-negativity of weak solutions to a combined flow and transport problem with vanishing, but prescribed porosity field, permeability and diffusion.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence and uniqueness of solutions to a flow and transport problem with degenerating coefficients\",\"authors\":\"N. Ray, R. Schulz\",\"doi\":\"10.1017/s0956792522000018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural changes of the pore space and clogging phenomena are inherent to many porous media applications. However, related analytical investigations remain challenging due to potentially vanishing coefficients in the respective systems of partial differential equations. In this research, we apply an appropriate scaling of the unknowns and work with porosity-weighted function spaces. This enables us to prove existence, uniqueness and non-negativity of weak solutions to a combined flow and transport problem with vanishing, but prescribed porosity field, permeability and diffusion.\",\"PeriodicalId\":51046,\"journal\":{\"name\":\"European Journal of Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956792522000018\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792522000018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Existence and uniqueness of solutions to a flow and transport problem with degenerating coefficients
Structural changes of the pore space and clogging phenomena are inherent to many porous media applications. However, related analytical investigations remain challenging due to potentially vanishing coefficients in the respective systems of partial differential equations. In this research, we apply an appropriate scaling of the unknowns and work with porosity-weighted function spaces. This enables us to prove existence, uniqueness and non-negativity of weak solutions to a combined flow and transport problem with vanishing, but prescribed porosity field, permeability and diffusion.
期刊介绍:
Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.