Casson纳米流体流过等温可渗透拉伸片的数值解:MHD、热辐射和蒸腾效应

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY
S. Reddy, P. Valsamy, D. Reddy
{"title":"Casson纳米流体流过等温可渗透拉伸片的数值解:MHD、热辐射和蒸腾效应","authors":"S. Reddy, P. Valsamy, D. Reddy","doi":"10.1166/jon.2023.2034","DOIUrl":null,"url":null,"abstract":"The Runge-Kutta Shooting Technique may be used to discover numerical solutions by the absence of magnetic field, thermal radiation, then transpiration consequence for viscous, incompressible, electrically conducting with combination of Casson and Nano-fluids that approach an isothermal\n permeable non-linearly stretched sheet. The governing equations for this fluid flow were transformed keen on non-linear ODEs using the similarity quantities. Visualizations of velocities, temperatures, and concentrations illustrate the mathematics behind the issue. According to tabular data,\n these flow regulating factors affect the coefficient of friction for skin-friction, heat transfer, and mass flow coefficients. Program code validation literature has been compared to the new numerical findings. It has been shown that flow characteristics are greatly affected by the amount\n of air that is exhaled. The study’s applications include industrial Nano-technological manufacturing processes. In this current work, the speed profiles are diminishing growing values of Casson fluid limitation as well as decreases by growing values of Magnetic field & Suction/Injection\n parameters. With increasing effects Brownian motion and Thermophoresis temperature profiles are increase. As the values of Thermal radiation of limitation enhances, the temperature profiles are also increases. The concentration profiles are increasing with increasing values of Thermophoresis\n parameter and reverse effect observed in case of Brownian motion effect. Also, concentration profiles decreases with increasing values of Lewis number.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Solutions of Casson-Nano Fluid Flow Past an Isothermal Permeable Stretching Sheet: MHD, Thermal Radiation and Transpiration Effects\",\"authors\":\"S. Reddy, P. Valsamy, D. Reddy\",\"doi\":\"10.1166/jon.2023.2034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Runge-Kutta Shooting Technique may be used to discover numerical solutions by the absence of magnetic field, thermal radiation, then transpiration consequence for viscous, incompressible, electrically conducting with combination of Casson and Nano-fluids that approach an isothermal\\n permeable non-linearly stretched sheet. The governing equations for this fluid flow were transformed keen on non-linear ODEs using the similarity quantities. Visualizations of velocities, temperatures, and concentrations illustrate the mathematics behind the issue. According to tabular data,\\n these flow regulating factors affect the coefficient of friction for skin-friction, heat transfer, and mass flow coefficients. Program code validation literature has been compared to the new numerical findings. It has been shown that flow characteristics are greatly affected by the amount\\n of air that is exhaled. The study’s applications include industrial Nano-technological manufacturing processes. In this current work, the speed profiles are diminishing growing values of Casson fluid limitation as well as decreases by growing values of Magnetic field & Suction/Injection\\n parameters. With increasing effects Brownian motion and Thermophoresis temperature profiles are increase. As the values of Thermal radiation of limitation enhances, the temperature profiles are also increases. The concentration profiles are increasing with increasing values of Thermophoresis\\n parameter and reverse effect observed in case of Brownian motion effect. Also, concentration profiles decreases with increasing values of Lewis number.\",\"PeriodicalId\":47161,\"journal\":{\"name\":\"Journal of Nanofluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jon.2023.2034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.2034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

龙格-库塔射击技术可用于发现粘性、不可压缩、导电的Casson和Nano流体组合在没有磁场、热辐射的情况下的数值解,这些流体接近等温可渗透的非线性拉伸薄板。该流体流动的控制方程使用相似量在非线性常微分方程上进行了转换。速度、温度和浓度的可视化说明了这个问题背后的数学原理。根据表格数据,这些流量调节因素影响表面摩擦的摩擦系数、传热系数和质量流量系数。程序代码验证文献已与新的数值结果进行了比较。已经表明,流动特性在很大程度上受到呼出的空气量的影响。该研究的应用包括工业纳米技术制造过程。在目前的工作中,速度分布随着Casson流体限制值的增加而减小,同时随着磁场和吸入/注入参数值的增加也在减小。随着效应的增加,布朗运动和热电泳的温度分布也在增加。随着限制热辐射值的增加,温度分布也会增加。浓度分布随着热电泳参数值的增加而增加,在布朗运动效应的情况下观察到反向效应。此外,浓度分布随路易斯数的增加而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Solutions of Casson-Nano Fluid Flow Past an Isothermal Permeable Stretching Sheet: MHD, Thermal Radiation and Transpiration Effects
The Runge-Kutta Shooting Technique may be used to discover numerical solutions by the absence of magnetic field, thermal radiation, then transpiration consequence for viscous, incompressible, electrically conducting with combination of Casson and Nano-fluids that approach an isothermal permeable non-linearly stretched sheet. The governing equations for this fluid flow were transformed keen on non-linear ODEs using the similarity quantities. Visualizations of velocities, temperatures, and concentrations illustrate the mathematics behind the issue. According to tabular data, these flow regulating factors affect the coefficient of friction for skin-friction, heat transfer, and mass flow coefficients. Program code validation literature has been compared to the new numerical findings. It has been shown that flow characteristics are greatly affected by the amount of air that is exhaled. The study’s applications include industrial Nano-technological manufacturing processes. In this current work, the speed profiles are diminishing growing values of Casson fluid limitation as well as decreases by growing values of Magnetic field & Suction/Injection parameters. With increasing effects Brownian motion and Thermophoresis temperature profiles are increase. As the values of Thermal radiation of limitation enhances, the temperature profiles are also increases. The concentration profiles are increasing with increasing values of Thermophoresis parameter and reverse effect observed in case of Brownian motion effect. Also, concentration profiles decreases with increasing values of Lewis number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信