S. Chalupczok, P. Kurzweil, H. Hartmann, C. Schell
{"title":"二氧化钌氧化还原化学的循环伏安法研究——评述与修正","authors":"S. Chalupczok, P. Kurzweil, H. Hartmann, C. Schell","doi":"10.1155/2018/1273768","DOIUrl":null,"url":null,"abstract":"By cyclic voltammetry at high scan rates, the electrochemical properties of RuO2 in acidic and alkaline solutions were investigated in detail. Thirteen current peaks can be distinguished in sulfuric acid and sodium hydroxide. With respect to the pH sensitivity of RuO2 electrodes, we considered charge calculations, peak currents, and apparent diffusion coefficients. The nature of the Ru(II) oxidation was clarified by Ru(I)−Ru(III) species.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/1273768","citationCount":"30","resultStr":"{\"title\":\"The Redox Chemistry of Ruthenium Dioxide: A Cyclic Voltammetry Study—Review and Revision\",\"authors\":\"S. Chalupczok, P. Kurzweil, H. Hartmann, C. Schell\",\"doi\":\"10.1155/2018/1273768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By cyclic voltammetry at high scan rates, the electrochemical properties of RuO2 in acidic and alkaline solutions were investigated in detail. Thirteen current peaks can be distinguished in sulfuric acid and sodium hydroxide. With respect to the pH sensitivity of RuO2 electrodes, we considered charge calculations, peak currents, and apparent diffusion coefficients. The nature of the Ru(II) oxidation was clarified by Ru(I)−Ru(III) species.\",\"PeriodicalId\":13933,\"journal\":{\"name\":\"International journal of electrochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/1273768\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/1273768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/1273768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
The Redox Chemistry of Ruthenium Dioxide: A Cyclic Voltammetry Study—Review and Revision
By cyclic voltammetry at high scan rates, the electrochemical properties of RuO2 in acidic and alkaline solutions were investigated in detail. Thirteen current peaks can be distinguished in sulfuric acid and sodium hydroxide. With respect to the pH sensitivity of RuO2 electrodes, we considered charge calculations, peak currents, and apparent diffusion coefficients. The nature of the Ru(II) oxidation was clarified by Ru(I)−Ru(III) species.