基于Twitter实时中断事件数据的模糊供应链风险评估方法

IF 4.4 4区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
N. Janjua, Falak Nawaz, D. Prior
{"title":"基于Twitter实时中断事件数据的模糊供应链风险评估方法","authors":"N. Janjua, Falak Nawaz, D. Prior","doi":"10.1080/17517575.2021.1959652","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, we develop a novel methodology to identify supply chain disruption events using Twitter feeds in real time. Underpinned by advances in Natural Language Processing (NLP) and machine learning, we propose an approach that includes a state-of-the-art variant of Conditional Random Field (CRF) model for event annotation, location-based clustering of the annotated events, and a fuzzy inference system to evaluate supply chain risk. We validate the new approach through a text corpus derived from a Twitter data stream, which is a popular method in NLP. The results show that the proposed model outperforms the baseline model.","PeriodicalId":11750,"journal":{"name":"Enterprise Information Systems","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17517575.2021.1959652","citationCount":"6","resultStr":"{\"title\":\"A fuzzy supply chain risk assessment approach using real-time disruption event data from Twitter\",\"authors\":\"N. Janjua, Falak Nawaz, D. Prior\",\"doi\":\"10.1080/17517575.2021.1959652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, we develop a novel methodology to identify supply chain disruption events using Twitter feeds in real time. Underpinned by advances in Natural Language Processing (NLP) and machine learning, we propose an approach that includes a state-of-the-art variant of Conditional Random Field (CRF) model for event annotation, location-based clustering of the annotated events, and a fuzzy inference system to evaluate supply chain risk. We validate the new approach through a text corpus derived from a Twitter data stream, which is a popular method in NLP. The results show that the proposed model outperforms the baseline model.\",\"PeriodicalId\":11750,\"journal\":{\"name\":\"Enterprise Information Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17517575.2021.1959652\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enterprise Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/17517575.2021.1959652\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterprise Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/17517575.2021.1959652","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 6

摘要

摘要在这项研究中,我们开发了一种新的方法来使用Twitter实时识别供应链中断事件。在自然语言处理(NLP)和机器学习进步的基础上,我们提出了一种方法,包括用于事件注释的条件随机场(CRF)模型的最新变体、注释事件的基于位置的聚类,以及用于评估供应链风险的模糊推理系统。我们通过推特数据流中的文本语料库验证了新方法,这是NLP中的一种流行方法。结果表明,所提出的模型优于基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fuzzy supply chain risk assessment approach using real-time disruption event data from Twitter
ABSTRACT In this study, we develop a novel methodology to identify supply chain disruption events using Twitter feeds in real time. Underpinned by advances in Natural Language Processing (NLP) and machine learning, we propose an approach that includes a state-of-the-art variant of Conditional Random Field (CRF) model for event annotation, location-based clustering of the annotated events, and a fuzzy inference system to evaluate supply chain risk. We validate the new approach through a text corpus derived from a Twitter data stream, which is a popular method in NLP. The results show that the proposed model outperforms the baseline model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Enterprise Information Systems
Enterprise Information Systems 工程技术-计算机:信息系统
CiteScore
11.00
自引率
6.80%
发文量
24
审稿时长
6 months
期刊介绍: Enterprise Information Systems (EIS) focusses on both the technical and applications aspects of EIS technology, and the complex and cross-disciplinary problems of enterprise integration that arise in integrating extended enterprises in a contemporary global supply chain environment. Techniques developed in mathematical science, computer science, manufacturing engineering, and operations management used in the design or operation of EIS will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信